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Piecewise-smooth maps typically arise as discrete-time
models of dynamical systems when the continuous evolution
in time is punctuated by impacts or discrete switching events
that alter the form of the constitutive equations. Examples of
such systems include power electronic converters and switch-
ing circuits [1], [2], [3], mechanical systems with impacts
and friction [4] as well as models of certain physiological [5]
and economic systems [6]. As a parameter is varied, the
fixed point for the Poincaré map of such a system may
move in phase space and collide with the border between
two smooth regions. When this happens, the eigenvalues of
Jacobian matrix can change abruptly, leading to a special
class of nonlinear dynamic phenomena known as border-
collision bifurcations [7], [8], [9].

In a couple of recent publications, Kapitaniak and
Maistrenko [10] and Duta et al. [11] showed that piecewise-
smooth systems can exhibit a special type of border-collision
bifurcation in which several attractors are created simul-
taneously. A main feature of this type of bifurcation is
that, close to the bifurcation point, the distance between
the basins of attraction may be arbitrarily small. In the
presence of noise, no matter how small, this leads to a
fundamentally unpredictable behavior of the system when
a system parameter is slowly varied through the bifurcation
point.

Many physical systems, including switching circuits and
impact oscillators, are known to display quasiperiodicity and
other forms of multimode dynamics [4], [3], [12], [13].

In our recent work [14], [15], [16] we have shown that
border-collision bifurcations can lead to the birth of a stable
closed invariant curve associated with a quasiperiodic or a
periodic orbit. This phenomenon resembles the well-known
Neimark-Sacker bifurcation in several respects. However,
rather than through a continuous crossing of a pair of
complex-conjugate multipliers of the periodic orbit through
the unit circle, the border-collision bifurcation involves a
jump of the multipliers from the inside to the outside of
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this circle.
This leads to the questions: Can piecewise-smooth systems

exhibit border-collision bifurcations in which a stable peri-
odic orbit arises together with an attracting closed invariant
curve? And, if this is the case what is the mechanism for the
particular type of multiple-attractor bifurcation?

In order to address these questions, we first consider
the normal form map that represents the behavior of the
piecewise-smooth systems in a close neighborhood of the
border.

f :
(

x
y

)
�→

{
f−(x, y), x ≤ 0;
f+(x, y), x > 0,

(1)

where

f−(x, y) =
(

τ−x + y + µ
−δ−x

)
;

f+(x, y) =
(

τ+x + y + µ
−δ+x

)
, (x, y) ∈ R

2.

In this representation the phase plane is divided into
two regions, D− =

{
(x, y) : x ≤ 0, y ∈ R

}
and D+ ={

(x, y) : x > 0, y ∈ R
}
. τ− and δ− denote, respectively, the

trace and the determinant of the Jacobian matrix in the half-
plane D−, and τ+ and δ+ are the trace and determinant of
the Jacobian matrix in D+.

The theory of border-collision bifurcations developed so
far assumes contractive dynamics on both sides of the
discontinuity (i.e., |δ−| < 1 and |δ+| < 1)) [17], [18]. We
consider a situation where an attracting fixed point changes
into a spirally repelling fixed point as it moves across the
border. This is ensured by assuming δ− < 1, δ+ > 1, with

−(1+δ−) < τ− < 1+δ− and −2
√

δ+ < τ+ < 2
√

δ+ (2)

If µ < 0 then the map (1) has a single nontrivial stable
fixed point with a negative x-coordinate. When µ changes
sign, the x-coordinate of the fixed point also changes sign
and the fixed point abruptly loses stability when a pair of
complex-conjugate eigenvalues of the Jacobian matrix jump
from the inside to the outside of the unit circle, i.e. the
stable focus transforms into an unstable focus. This transition
leads to the birth of a stable invariant curve, associated with
quasiperiodic or phase-locked dynamics.

However, more complicated bifurcation phenomena are
also possible in such transitions. To study these phenomena,
we have calculated the chart of dynamical modes in the pa-
rameter plane (τ−, τ+) for positive values of µ > 0 (Fig. 1).
As shown in Fig. 1, this chart is characterized by a dense set



Fig. 1. Chart of dynamical modes in the parameter plane (τ−, τ+) with
the remaining parameters fixed at δ− = 0.5, δ+ = 1.6, and µ = 0.05.

of periodic tongues. Main resonance tongues in the figure are
marked with the corresponding rotation numbers. Between
the tongues there are parameter combinations that lead to
quasiperiodicity. In the chart of dynamical modes shown in
Fig. 1, Π∞,1 and Π∞,2 are domains where the trajectories
of the map diverge to infinity for all initial conditions.

Within each tongue of periodicity there is a closed in-
variant curve that is formed by the unstable manifold of the
saddle cycle and the points of the stable (node or focus)
and saddle cycles. With changes of the parameters τ− and
τ+, this invariant curve is destroyed through a homoclinic
bifurcation. However, the stable and saddle cycles continue
to exist after the destruction of the torus. With further change
of the parameters, these cycles merge and disappear in a
border-collision fold bifurcation. As a result, between the
curves of homoclinic bifurcation and of border-collision fold
bifurcation, periodic and quasiperiodic attractors coexist. On
the boundaries of this region one can observe hysteretic
transitions.

For parameter values corresponding to operation condi-
tions between these curves, as the parameter µ crosses the
bifurcation point at µ = 0, a multiple-attractor bifurcation
takes place in which a quasiperiodic orbit arises together
with stable and saddle fixed points. This is typical of regions
in the parameter plane where tongues of different dynamical
modes overlap.

After this stable closed invariant curve has been destroyed,
the multiple attractor bifurcation within the regions of in-
tersection results in the simultaneous appearance of several
pairs of stable and saddle cycles, none of which are situated
on an invariant curve. In other cases, the destruction of the
stable closed invariant curve leads to the appearance of a
chaotic attractor that can coexist with a stable cycle. For
particular parameter values one can then observe a multiple-
attractor bifurcation in which chaotic and periodic attractors
are simultaneously created from the stable focus fixed point
in a border-collision bifurcation.

Considering a two-dimensional piecewise-smooth map de-
scribing the behavior of a DC/DC converter with two-level
pulse-width modulated control, we show that the phenomena
observed for the piecewise linear normal form map may

actually occur in practical systems.
We obtain the chart of dynamical modes in the relevant

parameter plane through a detailed analytical and numerical
study and demonstrate how torus birth can take place either
via a classical Neimark–Sacker bifurcation or via a border-
collision bifurcation. Next, we discuss how the torus is
destroyed through a homoclinic bifurcation. This analysis
involves the use of numerical methods that can follow the
stable and unstable manifolds for the various modes.

Finally, we illustrate how the normal form theory can
predict the bifurcation behavior along the the border-collision
torus birth bifurcation curve. We obtain the functional rela-
tionships between the parameters of the normal form map (1)
and actual system parameters analytically and study the local
character of the bifurcation behavior of this system.
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