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Abstract
When nonlinear oscillators are mutually coupled via

dissimilar (or conjugate) variables, they show different
regimes of synchronous behavior. In identical conju-
gate coupled chaotic oscillators complete synchroniza-
tion occurs only by chaos suppression, when the cou-
pled subsystems drive each other into a regime of peri-
odic dynamics. In contrast to complete synchronization
via diffusive coupling in similar variables, the coupling
terms do not vanish but rather act as an internal drive.
We study the phenomenon of chaos death and complete
synchronization in a mutually conjugate coupled fun-
nel Rössler system.
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1 Introduction
The study of coupled nonlinear dynamical systems

is important from both theoretical and practical per-
spectives. Natural systems are rarely isolated and
are coupled to one another on a range of spatial and
temporal scales. Interactions between two or more
systems typically give rise to new phenomena—
synchronization being the most common. Although it
has long been known that weak coupling of oscillators
leads to synchronization [Pikovsky, Rosenblum and
Kurths, 2001] recent studies have focused on coupling
nonlinear systems where chaos synchronization,
hysteresis, phase locking, phase shifting, phase-flip
and amplitude death can occur [Pikovsky, Rosenblum
and Kurths, 2001; Kaneko, 1993; Pecora and Carroll,
1990; A. Prasad, Iasemmidis, Sabesan and Tsakalis,
2005; Ott, 1993].

In a recent study [Karnatak, Ramaswamy and Prasad,
2007] we examined the effect of coupling systems via
dissimilar (or conjugate) variables. The motivation

came from the fact that although the coupled systems
might be identical, it is at times not possible to couple
them via the same variables due to various practical
reasons, for instance in a coupled semiconductor laser
experiment [Kim, 2005; Kim, Roy, Aron, Carr and
Schwartz, 2005], a signal proportional to the photon
intensity fluctuation from one laser is used to modulate
the injection current of the other and vice versa. Other
examples can be drawn from the epidemiology litera-
ture [Goleniewski, 1996] or from studies of electrical
circuits, where the dynamical variables correspond to
currents or voltages which are cross coupled [Ueta,
Kawakami, 2003].

An important question to ask is whether conjugate
coupled systems can show complete synchronization
(CS) or not ? Note that in directly diffusively coupled
oscillators, for complete synchronization the coupling
terms vanish, implying that the synchronous state is
thus an orbit of the uncoupled system. When the cou-
pling involves conjugate variables, the coupling term
typically cannot vanish. Nevertheless, we find that
conjugate coupled systems can show complete syn-
chronization when they drive each other into a regime
of periodic dynamics, although the synchronous state
is a new orbit that is characteristic of the coupled
system. We term this change in dynamics from being
instrinsically chaotic to periodic as a consequence of
the interaction between oscillators aschaos death.

2 Conjugate coupling
Consider two coupled dynamical systems,

Ẋ1 = f(X1) + ǫg1(X′

2,X1)

Ẋ2 = f(X2) + ǫg2(X′

1
,X2).

}

(1)

In the absence of coupling (whenǫ = 0) these are
identical, withf a general nonlinear function, and the



variablesXi’s are taken to be dimensionless. The
superscript′ denotes the fact of conjugate coupling,
namely thatdissimilar variables appear in the argu-
ments of the coupling functionsg1 andg2, and here
we only consider linearg.
In our previous work we have shown that in specific

instances this form of the coupling can lead the dynam-
ics into a regime of amplitude death, namely a situa-
tion where both the oscillators are driven to stable fixed
points that may be created by the coupling. Underlying
this phenomenon is the fact that conjugate variables,
especially in oscillatory dynamics, are effectively sim-
ilar to considering time–delay, and it is known [Reddy,
Sen and Johnston, 1998] that time delay coupling can
cause amplitude death (AD).
Note that complete synchronization is not likely to oc-

cur unless there are special symmetries in the functions
f ,g1 andg2. Indeed, in the direct case, when simi-
lar variables appear in the coupling terms, the synchro-
nization manifold is one where the effective coupling
vanishes, and this is not explicitly possible here.

3 System
In order to present our results, we focus on the chaotic

Rössler system, where the nonlinear functionf is spec-
ified by (we use the notationXi ≡ xi, yi, zi),

ẋ1 = −ω1y1 − z1

ẏ1 = ω1x1 + ay1

ż1 = b + z1(x1 − c).







(2)

As has been extensively demonstrated in numerous
studies, over a range of the parametersa, b, andc the
dynamics is oscillatory, and can be chaotic [Rössler,
1976]. The second system is identical, except that
the variables have subscript 2. The parameters in the
two systems are taken to be identical (or nearly iden-
tical). Furthermore, we mainly consider linear (diffu-
sive) coupling functionsgi. We have, however studied
a number of different forms of the coupling and find
similar behaviour (results not presented here).

4 Complete Synchronization and chaos death
Consider mutually coupled identical chaotic oscilla-

tors,

ẋ1,2 = −ω1,2y1 − z1 + ǫ(y2,1 − x1,2)
ẏ1,2 = ω1,2x1,2 + ay1,2

ż1,2 = b + z1,2(x1,2 − c).







(3)

As explicitly shown in the inset of Fig. 1(a) the cou-
pling term does not vanish as it does in the case of
diffusive coupling with similar variables, although ow-
ing to the symmetric form, both the coupling terms
g1,2 = (y2,1 − x1,2) are indeed identical. It is there-

fore natural to consider the order parameter

σ = 〈|
g1

g2

〉| − 1 (4)

(here〈gi〉 corresponds to time averaged value of the
coupling term.) so that for CS,σ = 0 while it is
nonzero otherwise. The variation of the order param-
eterσ with ǫ is shown in in Fig. 1(b). Nearǫ ∼ 0.3
there is a reverse Hopf bifurcation that causes a loss of
CS. On further increasingǫ, the system undergoes am-
plitude death to identical fixed points, again leading to
a vanishing ofσ.
A consequence of the fact that the coupling does not

vanish on the synchronization manifold is that the syn-
chronized dynamics is typically not present in the un-
coupled system. Here, for instance, the two chaotic
oscillators drive each other into a regime of periodic
motion (as can be seen from the dynamics of thegi’s
in inset of Fig. 1(a), for example). In a sense this is a
case of “chaos death”—the killing of chaotic variations
in amplitude—similar to the suppression of all oscilla-
tions when amplitude death occurs.
Regardless of whether the coupling involves similar

or conjugate variables, the synchronized solution lies
on the manifoldM(x1 = x2, y1 = y2, z1 = z2). With
similar variables, the coupling vanishes, which means
that the subsystems effectively decouple. Then if the
subsystems have chaotic motion, the resulting synchro-
nized motion will also be chaotic with the perturbations
transverse to the manifoldM being stable while the
ones onM grow exponentially.
With conjugate variables in the coupling term, the sub-
systems are still interacting in the CS regime: this how-
ever requires symmetries, and as already seen, the cou-
pling terms become identical. We can therefore con-
sider this as an instance of a common signal (since
g1(t) ≡ g2(t)) driving identical subsystems: this is
effectively an instance of generalized synchronization
[Abarbanel, Rulkov and Sushchik, 1996].
Although the dynamics could be either regular or
chaotic, internal consistency requires that the motion
be nonchaotic. The argument is as follows. For gen-
eralized synchrony, all subsystem Lyapunov exponents
should be negative, but if the coupling term is chaotic,
then requires that the subsystem Lyapunov exponent
should be positive. This contradiction is resolved if
both the coupling and the individual motions are non-
chaotic; see Fig. 1(a)).
To summarize, for mutually conjugate coupled oscil-

lators, complete synchrony becomes possibleonly with
chaos suppression, leading to synchronized periodic
dynamics.

5 Conclusion
The coupling between identical dynamical systems

may naturally occur through conjugate variables and
this can give rise to the regimes of synchrony. We have
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Figure 1. The largest Lyapunov exponent as a function of the cou-

pling parameterǫ for the coupld Rössler system is shown in (a). Or-

der parameter,σ, as function of the coupling parameter is shown in

(b). Transition in dynamics from being chaotic to periodic is clearly

visible in (a) with the regime of chaos death (periodic behavior) high-

lighted asCD. The threshold for complete synchronization (where

σ vanishes) for the coupled system is marked asǫc in (b). The inset

figure shows the oscillations of the coupling termg1,2 atǫ = 0.28.

The oscillator parameters area = 0.3, b = 0.1, c = 8.5 and

ω1,2 = ω0 = 0.98.
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Figure 2. Chaotic and periodic dynamical regimes before andafter

ǫc are shown in (a) and (b). (c) and (d) show corresponding uncorre-

lated and completly synchronized dynamics. (a) and (c) are plotted

for ǫ = 0.22 while (b) and (d) are forǫ = 0.28

explored complete synchronization and the mechanism
of chaos death in this paper.

Complete synchronization occurs here in a manner
that is distinct from the situation when the coupling
is in similar variables: the coupling does not vanish
on the synchronization manifold, and instead each of

the systems is driven to a dynamical state that cannot
occur in the absence of the interaction. The only
completly synchronized solution possible in conjugate
coupling is necessarily periodic. When the systems are
not identical phase synchronization is possible, while
generalized synchrony occurs when the coupling is
unidirectional.

We believe that the above results are generally ap-
plicable, and that such regimes of complete synchro-
nization and chaos death will occur in other conjugate
coupled chaotic systems. Furthermore, they hold for a
range of parameter mismatch, so that the phenomena
observed here are robust and should be observable in
experiments.
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