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Abstract: An experimental implementation of an output-feedback controller on a
rotor dynamic system with set-valued friction is presented. The system exhibits
coexisting stable/unstable equilibria and undesired friction-induced limit cycles.
In the system, the friction and actuation are non-collocated, which prevents the
application of standard friction compensation techniques. Therefore, an output-
feedback control strategy is proposed that eliminates the friction-induced limit
cycling, stabilizes the desired equilibrium and is robust for uncertainties in the
friction model. The effectiveness of the proposed control strategy is shown both in
simulations and experiments. Copyright c©2007 IFAC
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1. INTRODUCTION

In this paper, the experimental results of an
output-feedback control design suppressing friction-
induced limit cycling in a rotor dynamic system
are presented. The rotor dynamic system consists
of an actuated inertia which is connected to a
second inertia with a low-stiffness link. The second
inertia is subject to friction which is described by a
model that contains dry friction and the Stribeck
effect or so-called negative damping (Olsson et
al., 1998). The Stribeck effect gives rise to unsta-
ble equilibria and stable periodic responses (limit
cycles) of the rotor dynamic system, where the
equilibria reflect constant rotational velocity so-
lutions of both inertias.
Extensive research has been performed with re-
spect to the experimental rotor dynamic set-up
under study. The modeling, parameter estimation

and analysis of the dynamic behaviour of the set-
up are discussed in (Mihajlović et al., 2004; Mi-
hajlović et al., 2006).

It is important to note that the examined sys-
tem configuration and control problem consid-
ered here, are encountered in many industrial
rotor dynamic systems, such as drilling systems
for oil exploration, see e.g. (Leine et al., 2002),
drivelines of sea ships, printers etc. In such en-
gineering systems, limit cycling is an undesirable
phenomenon because it causes kinetic energy dis-
sipation, noise, excessive wear of machine parts
and inferior positioning properties. Research on
friction-induced limit cycling in different mechani-
cal systems has been conducted in e.g. (Olsson and
Åström, 2001; Jeon and Tomizuka, 2005; Mallon
et al., 2006).



The goal is to control the rotor dynamic sys-
tem to a stable, constant velocity, equilibrium
(thereby eliminating limit cycling). Note that in
many rotor dynamic engineering systems, such
as drilling systems, such constant velocity solu-
tion represents the desired operating steady-state.
The main difficulty in attaining this goal is that
the second inertia is not actuated and the mod-
eled friction at the second inertia is set-valued.
Due to the non-collocated nature of the friction
and actuation, standard techniques (Armstrong-
Hélouvry et al., 1994; Mallon et al., 2006) can
not be employed for friction compensation. b In
the literature, results on the control of nonsmooth
systems with non-collocation of actuation and dry
friction are limited. Integrator backstepping can
be used for nonsmooth systems to stabilize the
equilibrium (Tanner and Kyriakopoulos, 2003).
This approach is based on nonsmooth analysis
and Lyapunov stability for nonsmooth systems
and its application is limited to systems in strict-
feedback form. A variable structure control design
is presented in (Kwatny et al., 2002) for systems
to deal with nonsmooth uncertainties. A variable
structure controller is designed by using a multi-
state backstepping procedure. However, the in-
tended application is to systems where uncertain
friction forces are relatively small. Trajectory con-
trol for systems with non-collocated actuation and
nonsmooth friction by a model adaptive reference
control scheme is studied in (Taware et al., 2003).
The model reference adaptive scheme uses static
feedback for control and dynamic output feedback
for parameter adaptation to achieve output track-
ing.

The mentioned control strategies for nonsmooth
systems use the full state of the system to stabilize
the equilibrium or to achieve output tracking. In
this work, the experimental validation of the sta-
bilization of equilibria is shown for a nonsmooth
rotor dynamic system via output feedback. The
control design is based on the Popov criterion,
which results in robustness with respect to set-
valued nonlinearities in the system. Control de-
sign based on the circle criterion and the Popov
criterion for (nonlinear) continuous systems are
discussed in e.g. (Arcak et al., 2003). In the cur-
rent work, the control design based on the Popov
criterion is extended for application to nonsmooth
rotor dynamic systems. The focus of this paper is
on the experimental implementation and valida-
tion of this control strategy.

The paper is organized as follows. The experimen-
tal set-up is described in Section 2 where also the
model of the system is presented. The output-
feedback controller is introduced in Section 3.
In Section 4, both simulation and experimental
results are discussed to illustrate the effectiveness
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Fig. 1. Photo of the rotor dynamic set-up.

of the control strategy. The paper is finished with
the conclusions in Section 5.

2. EXPERIMENTAL SET-UP

The experimental set-up consists of an upper disc
driven by a drive part (consisting of a power am-
plifier, DC-motor and a gear box), a steel string,
a lower disc and a brake device, see Figure 1. The
upper disc is connected to the lower disc by a steel
string, which is a low-stiffness connection between
the discs. A brake disc is connected to the lower
disc and a brake device is attached to the brake
disc to exert a normal force to it. Oil is supplied
to the brake disc to create an oil layer between
the disc and the brake device. This combination of
the brake device with lubrication creates a friction
characteristic with Stribeck effect or with a so-
called negative damping characteristic. Two incre-
mental encoders are used to measure the angular
positions of the lower and the upper discs.
A schematic representation of the rotor dynamic
system is depicted in Figure 2. The drive part of
the rotor dynamic system is considered as a single
component for the modeling of the rotor dynamic
set-up and where u is defined as the input voltage
to the drive part.
The system has two degrees of freedom; the upper
disc and lower disc both have rotational freedom.
The equations of motion for the upper disc and
the lower disc are given by

Juθ̈u + kθ(θu − θl) + Tfu(θ̇u)− kmu = 0
Jlθ̈l − kθ(θu − θl) + Tfl(θ̇l) = 0,

(1)

with θu the angular position of the upper disc
and θl the angular position of the lower disc. Set-
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Fig. 2. Schematic drawing of rotor system.

valued force laws are used to model the friction
acting on the upper and lower disc to account
for the sticking effect in both characteristics. The
friction acting on the upper disc is caused by the
electromagnetic field in the drive part and the
bearings that support the disc and is modeled by
Tfu, see Figure 3:

Tfu(θ̇u) ∈
{

Tcu(θ̇u)sgn(θ̇u) for θ̇u 6= 0
[−Tsu + ∆Tsu, Tsu + ∆Tsu] for θ̇u = 0,

(2)

where the function Tcu(θ̇u) is given by

Tcu(θ̇u) = Tsu + ∆Tsusgn(θ̇u) + bu|θ̇u|+ ∆buθ̇u.
(3)

The friction Tfl acting on the lower disc is caused
by bearings that support the lower disc and,
mainly, by the brake device. The friction Tfl, see
Figure 4, is represented by

Tfl(θ̇l) ∈
{

Tcl(θ̇l)sgn(θ̇l) for θ̇l 6= 0
[−Tsl, Tsl] for θ̇l = 0,

(4)

and the continuous function Tcl(θ̇l) is given by

Tcl(θ̇l) = Tcl + (Tsl − Tcl)e
−| θ̇l

ωsl
|δsl

+ bl|θ̇l|. (5)

The state-space equations of the rotor dynamic
system are given by

ẋ1 = x2 − x3

ẋ2 =
1
Ju

[−kθx1 − Tfu(x2) + kmu]

ẋ3 =
1
Jl

[kθx1 − Tfl(x3)]

y = x1,

(6)

where the state vector x is defined as
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Fig. 3. Upper friction model Tfu.
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x =

 x1

x2

x3

 =

 α
ωu

ωl

 =

 θu − θl

θ̇u

θ̇l

 . (7)

Note that the state α = θu − θl represents the
relative angular displacement of the lower disc
with respect to the upper disc.
The system (6) can be written in a Lur’e-type
form, which is convenient for the design of the
output-feedback controller:

ẋ = Ax + Gw + Bu
z = Hx
w ∈ −ϕ(z)
y = Cx,

(8)

where state x ∈ R3, w, z ∈ R2, input u ∈
R, measured output y ∈ R, and ϕ(z) =
[ϕ1(z1) ϕ2(z2)]T with ϕi : R → R for i = 1, 2.
The matrices and the discontinuity ϕ(z) in (8) are
given by

A =


0 1 −1

− kθ

Ju
0 0

kθ

Jl
0 0

 , B =

 0
km

Ju
0

 , (9)

G =


0 0
1
Ju

0

0
1
Jl

 ,H =
[

0 1 0
0 0 1

]
, (10)

ϕ(z) =
[

Tfu(z1)
Tfl(z2)

]
. (11)



Table 1. Estimated parameters.

parameter value unit

km 4.3228 [Nm/V]
Ju 0.4765 [kg m2]

Tsu 0.37975 [Nm]
∆Tsu -0.00575 [Nm]

bu 2.4245 [kg m2/rad s]

∆bu -0.0084 [kg m2/rad s]
kθ 0.075 [Nm/rad]

Jl 0.035 [kg m2]

Tsl 0.26 [Nm]
Tcl 0.05 [Nm]

ωsl 2.2 [rad/s]

δsl 1.5 [-]
bl 0.009 [kg m2/rad s]

The parameters of the rotor dynamic model (6)
are estimated by dedicated parameter identifica-
tion experiments, following a similar procedure as
described in (Mihajlović et al., 2004). The esti-
mation procedure is a delicate process, since the
friction acting on the lower disc is very sensitive
to conditions such as temperature, humidity and
the lubrication conditions. The control goal is to
stabilize the equilibria of the rotor dynamic sys-
tem. Therefore, a predictive model is desired for
the steady-state behaviour of the rotor dynamic
system. The estimated parameters are validated
by comparing the steady-state solutions of the
simulations with those of the experiments. The
estimated parameters are summarized in Table 1.
The reader is referred to (Mihajlović et al., 2006)
for an extensive investigation of the analysis of the
dynamic behaviour of the rotor dynamic system.

Next, a bifurcation diagram for the rotor dynamic
system is presented with the constant input volt-
age uc as the bifurcation parameter. The different
(co-existing) steady-state solutions of the rotor
dynamic system are depicted in the bifurcation
diagram for a constant input voltage uc, see Fig-
ure 5. The results from the experiments are repre-
sented by marks and the results of the simulations
by lines. The maximum and minimum value of the
state ωl are plotted in the bifurcation diagram
in case the response is a periodic solution. For
the region with constant input voltages up to
approximately uc = 2.7 V, only stable limit cycles
are observed. Figure 6 shows such a limit cycle
response for uc = 2.7 V. In the region with input
voltages from approximately 2.7 V up to approx-
imately 4.5 V, two stable steady-state solutions
co-exist. In this region, the steady-state solution
can be either an equilibrium point or a stick-slip
limit cycle depending on the initial conditions.
For constant input voltages higher than 4.5 V,
only a stable equilibrium point occurs. The control
goal is to stabilize the unstable equilibria up to
uc = 2.7 V and to eliminate the limit cycles up to
4.5 V.
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Fig. 5. Bifurcation diagram for open-loop rotor
dynamic system.
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Fig. 6. Experimental limit cycle response of the
rotor dynamic system for uc = 2.7 V.

3. OUTPUT-FEEDBACK CONTROLLER

The control strategy presented in this section aims
at rendering the isolated constant velocity equi-
libria of the open-loop system (8) globally asymp-
totically stable, thereby eliminating the unwanted
stick-slip limit cycling. The output-feedback con-
troller exploits the estimated state of the rotor
dynamic system obtained from an observer. The
proposed observer (Juloski et al., 2006) for the
rotor dynamic system (6) is given by


˙̂x = Ax̂ + L(y − Cx̂) + Gŵ + Bu
ŵ ∈ −ϕ(ẑ)
ẑ = Hx̂ + N(y − Cx̂)
ŷ = Cx̂,

(12)

where the rotor dynamic state estimate x̂ ∈ R3,
ẑ, ŵ ∈ R2, ŷ ∈ R and the observer matrices
N ∈ R2×1, L ∈ R3×1 are to be designed.
The output-feedback control law is given by

u = uc + ucomp + K(x̂− xeq), (13)

with xeq = [αeq ωeq ωeq]T the desired equilib-
rium of the rotor dynamic system (8), the control
gain K ∈ R1×3 and

ucomp =
1

km
(Tfu − bux̂2). (14)



The part ucomp of the control law compensates
partly the friction acting at the upper disc of
the rotor dynamic system. The resulting ’effective’
friction acting at the upper disc is purely viscous.
Note that such a friction compensation can not
be employed to compensate for the friction at the
lower disc, which is responsible for the stick-slip
limit cycling.
The application of the control law (13) to the rotor
dynamic system (6) results in an interconnection
of the observer error dynamics and the closed-
loop rotor dynamic system. The observer error
is defined as e = x− x̂ and the interconnected
system is then given by

ẋ = (A + BK)x + Gw −BKe
−BKxeq + Buc + Bucomp

z = Hx
w ∈ −ϕ(z)
y = Cx,

(15a)

ė = (A− LC)e + G(w − ŵ)
ẑ = Hx̂ + N(y − Cx̂)
ŵ ∈ −ϕ(ẑ).

(15b)

For computation of the observer gains L,N and
the control gain K that guarantee global asymp-
totic stability of the equilibria (x, e) = (xeq, 0), a
result is used presented in (de Bruin, 2006). For
the sake of brevity and given the experimental
focus of the current paper, the closed-loop stabil-
ity proof is omitted here. Instead the conditions
are presented that the closed-loop dynamics (15)
should satisfy. In (de Bruin, 2006), it is shown
that global asymptotic stability of equilibrium
(x, e) = (xeq, 0) is guaranteed if:

(1) the equilibrium e = 0 of the observer error
dynamics (15b) is globally exponentially sta-
ble,

(2) the equilibrium x = xeq of the closed-loop ro-
tor dynamic system (15a) for e = 0 is globally
asymptotically stable and,

(3) the state x(t) in (15a) is bounded for any
bounded input e(t).

These conditions are satisfied when two matrix
inequalities, implying strict passivity of the linear
parts of (15a) and (15b), are satisfied by appro-
priately designing the control and observer gains
and the nonlinearity ϕ is linearly bounded and
monotone. The nonlinearity ϕ can be made mono-
tone by means of a loop transformation. Moreover,
additional robustness with respect to the nonlin-
earity ϕ can be obtained by a loop transformation.
The resulting gains are given by (de Bruin, 2006):

KT =

 15.9
1.57
27.6

 , L =

 195
−312
−9080

 , N =
[
−2.22
−37.8

]
.

(16)
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Fig. 7. Experimental closed-loop response of the
rotor dynamic system for uc = 2.5 V.

4. SIMULATIONS AND EXPERIMENTS

The presented output-feedback controller is ap-
plied to the rotor dynamic system. Note that the
actuator input voltage of the rotor dynamic set-
up is limited to the range [−5V, 5V ]. An additional
low-pass filter is applied to the observed velocity
of the lower disc to avoid undesired high-frequency
phenomena (e.g. chatter) when the observed ve-
locity of the lower disc is fed back to the controller.

The resulting output-feedback controller is used to
stabilize the equilibria of the rotor dynamic set-
up for large range of constant inputs. The exper-
imental closed-loop transient response is shown
for the constant input voltage uc = 2.5 V in
Figure 7. For the open-loop rotor dynamic sys-
tem (6), the only stable solution is a limit cycle,
see Figure 5. The output-feedback controller is
switched on at t = 5 s and the closed-loop system
converges to the equilibrium state (αeq = 1.36
rad and ωeq = 4.40 rad/s). Note that the input
voltage is saturated for approximately 0.5 seconds
when the output-feedback controller is switched
on. The saturation does, however, not influence
the steady-state solutions.

Both experimental and model-based bifurcation
diagrams for the closed-loop rotor dynamic sys-
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Fig. 8. Bifurcation diagram for closed-loop rotor
dynamic system.

tem are depicted in Figure 8. The simulated bi-
furcation diagram shows that for all constant uc

the desired equilibrium is globally asymptotically
stabilized. In experiments, the output-feedback
controller is able to eliminate the stable limit
cycles and to stabilize the unstable equilibria for
a large range of constant inputs uc. However, for a
small range of low voltages, the output-feedback
controller can not stabilize the equilibria of the
experimental rotor dynamic set-up. The remain-
ing closed-loop limit cycles up to uc = 1.5 V differ
from the open-loop limit cycles. A cause for this
lack of stability of the equilibria at these low
input voltages may be some unmodeled position-
dependent friction acting on the lower disc.

5. CONCLUSIONS

In this paper, a rotor dynamic system with set-
valued friction is considered. The presence of fric-
tion causes undesirable stick-slip limit cycling.
Due to the non-collocated nature of the fric-
tion and actuation, standard friction compensa-
tion techniques can not be used. Therefore, an
output-feedback control strategy is proposed that
stabilizes the unstable equilibria and eliminates
the stick-slip limit cycles. The effectiveness of this
strategy is shown in both simulations and experi-
ments.
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