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Abstract
In the framework of the Fitzhugh Nagumo kinetics

and the oscillatory recovery in excitable media, we
present a new type of meandering of the spiral waves,
which leads to spiral break up and spatiotemporal
chaos. The tip of the spiral follows an outward spiral-
like trajectory and the spiral core expands in time. This
type of destabilization of simple rotation is attributed to
the effects of curvature and the wave-fronts interactions
in the case of oscillatory damped recovery to the rest
state. This model offers a new route to and caricature
for cardiac fibrillation, and when we apply the feed-
back resonant drift method, for defibrillation all wave
activity gets eliminated at the unexcitable boundaries.

Key words
Spiral break up, spatiotemporal chaos, resonant drift.

1 Introduction
Rotating spiral waves are ubiquitous in excitable me-

dia. They have been observed in chemical reactive so-
lutions [Kapral and Showalter, 1994], [Imbihl and Ertl,
1995], in slime-mold aggregates [Murray, 1989] and
most importantly in cardiac muscle [Chaos, Special is-
sue on dynamics in cardiac tissue, 2002].
Such wave patterns have been studied using reaction-

diffusion equations models. For some values of the
system control parameters, they undergo simple rigid
rotation around a circular core. However, as the con-
trol parameter is varied, the spiral tip deviates from
circular trajectories [Winfree, 1987], [Meron, 1991b],
[Zykov, 1986], [Zykov, 1987], [Meron, 1989], [Meron,
1991a], [Tyson and Keener, 1988]. This non-steady
rotation is known as meandering and it has been ob-
served essentially in chemical systems such as in the
Belouzov-Zhabotinsky (BZ) reaction [Zykov, Stein-
bock and Muller, 1994]. Experiments with this reaction
have also demonstrated spiral breakup [Nagy-Ungvarai

and Muller, 1994], [Markus and Stavridis, 1994]. This
later is of interest in cardiology since it is the prelude
to cardiac fibrillation, the commonest cause of sudden
cardiac death [Panfilov and Hogeweg, 1995], [Win-
free, 1994], and has been observed in models that show
wave trains spatiotemporal instabilities [Karma, 1994],
[Courtemanche, Glass, and Kenner, 1993]. It is char-
acterized by spatiotemporally chaotic or irregular wave
patterns in excitable media and remains a challenging
problem in nonlinear science.
We present in this paper a new type of meandering

leading to spiral breakup and offering a new route to
spatiotemporal irregularity or chaos in excitable media.
Spiral core expansion occurs here as the spiral free end
or tip follows an outward motion along a path that looks
itself like a spiral. We have previously reported some
earliest results about this type of meandering [Sabbagh,
2009], and in this paper we account for this type of me-
andering as due to core expansion and we identify it
as a new route to spiral break up and then spatiotem-
poral irregularity. In addition, we apply the feedback
resonant drift method to eliminate the wave activity as
a caricature of eliminating defibrillation. This core ex-
pansion was previously expected by the theory of non-
local effects [Meron, 1991b], [Meron, 1989], [Meron,
1991a], and was attributed to effect of curvature on the
velocity of propagation coupled to the effects of the in-
teraction of successive wave-fronts due to refractori-
ness. The dependence of the normal velocity of propa-
gation on curvature is given byv = v0 − kD, where k is
the local curvature, D is the diffusion coefficient and v0
is the plane wave velocity of propagation [Tyson and
Keener, 1988]. Due to this velocity gradient, small
wavelength perturbations on the segments away from
the tip would decay, which would stabilize wave prop-
agation away from the tip and maintains the rotational
motion of the spiral. On the contrary, perturbations
straightening a small segment containing the tip would
reduce curvature, and consequently the normal veloc-
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ity of wave propagation is enhanced as the gradient
of the normal velocity becomes weaker. This means
that the tip would have a less tendency to curl but it
tends to advance further. Therefore, further straight-
ening of this segment containing the tip is expected.
Thus, the spiral tip undergoes an outward forward mo-
tion instead of simple rigid rotation. If the recovery
is non-oscillatory but monotonic, this destabilizing ef-
fect of curvature would be counteracted by the repul-
sive wave-front interaction due to the refractory period
imposed on the medium after the passage of the pre-
ceding wave. In that case, circular rigid rotation would
be sustained.
This outward motion of the tip along a spiraling tra-

jectory was predicted by Ehud Meron in his theory of
non-local effects [Meron, 1991b], [Meron, 1991a]. He
proposed an approximate spiral wave solution of the re-
action diffusion system in the form of a superposition
of solitary wave-fronts parallel to each other, and then
derived an evolution equation using a singular pertur-
bation approach. The numerical solution of this equa-
tion, for the case of an oscillatory recovering excitable
medium, was a spiral wave whose core expands in time
and whose tip moves itself along a spiraling path. How-
ever, no observation of this type of spiral wave mean-
dering and core expansion was obtained by Meron in
reaction diffusion systems.

2 The Model
Here, we present a new model showing for the first

time this predicted core expansion. We use a modified
Barkley’s model [Barkley, 1991], [Barkley, Kness and
Tuckerman, 1990] given by:

∂u
/

∂ t =
1
ε

u(1−u)[u− ((b+ v)/a)]+∇2u,

∂v
/

∂ t = u3 − v, (1)

where u and v are the excitation and recovery variables
respectively. The parameter b determines the excitation
threshold. The inverse ofε , characterizing the abrupt-
ness of excitation, determines the recovery time. In the
standard Barkley’s model where the local kinetics in
the second equation is given by (u − v), propagation
cannot be maintained upon increasing ε . Here propa-
gation is maintained due to the delay in the production
of v.
Numerical simulations were performed on square

grids using the explicit Euler integration method with
a 9-point neighborhood of the Laplacian and no-flux
boundary conditions. The space and time steps are
respectively dx = 0.51 and dt = 0.052. Fig. 1 illus-
trates the nullclines.The time signals of the two vari-
ables when the threshold of excitation is exceeded are
shown in Fig. 2. In the standard Barkley’s model
where the local kinetics in the second equation of (1)
is given by(u− v), propagation cannot be maintained
upon increasingε . Here propagation is maintained due

to the delay in the production of v as shown in Fig. 2,
compared to the production of v or the time at which
v starts increasing in the standard model as shown in
Fig. 3. Also the rate of recovery of the medium is made
slower (in Fig. 2) compared to rate of recovery in the
standard model where u goes to zero more rapidly (in
Fig. 3).

Figure 1. Phase diagram illustrating the dynamics of the
PDE-system with u and v recorded at the point (40,40) in a
grid size of 220. Parameters: a = 0.75,b = 0.06, ε−1 = 13.5.
Shown are the nullclines: v = u3, u = uth, u = 0, and u = 1.

Figure 2. The time variation of u and v corresponding to one
excursion along the phase diagram in Fig. 1.

3 Core Expansion
A spiral wave was initiated using the coarse gradient

cross-field method, that is by setting u = 0 in the left
half of the medium and u = 1 in the right half; v = a/2
in the upper half and v = 0 in the lower half. The sub-
sequent evolution of the system at different times is
shown in snapshots in Fig. 4. The simple rigid rotation
of the spiral is destabilized because of the relatively
high value of ε . The spiral tip defined as the intersec-
tion of the two isolines u = 0.5 and v = 0.5u−b, starts
meandering, the spiral core expands as shown in Fig. 4,
and the tip follows an outward motion along a spiraling
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Figure 3. The time variation of u and v in the standard model.

path as shown in Fig. 5(left). The type of meandering
is different for a different value of ε in Fig. 5(right).
The meandering shown in Fig. 5(left) offers a demon-
stration that agrees with the prediction of the theory of
non-local effects by Meron in the case of oscillatory
recovery in excitable media. The type of recovery ac-
tually depends on the value of the control parameter ε .
For low values of ε , perturbations near the spiral core
are quenched by repulsive wave-fronts interactions in
the monotonically recovering medium. If the value of
ε is increased and for appropriate values for the other
parameters, the tip undergoes this interesting outward
motion along a path that looks like a spiral while the
core grows in size due to oscillatory recovery to the
resting state. The distance between the tip segment and
the one ahead of it is determined by one of the maxima
of the oscillatory tail. This corresponds to one of the
minima of the excitation threshold.

Figure 4. Snapshots showing the core expansion with dt =
0.052,dx = 0.51,L = 48, grid size: 95. (Time intervals be-
tween snapshots are not equal).

In Fig. 5(left), the distance between the points denot-
ing the tip positions increases as the tip moves out-
ward implying that the tip motion is accelerated. In
Fig. 4, the spiral core expands until spiral breakup oc-
curs. This happens because the spiral period changes
as the spiral drifts and meanders, until at some point
within the excitable medium, it reaches the minimum
period needed for plane wave propagation. This change
in the spiral period as the tip moves outward and for-

Figure 5. Trajectory of the spiral tip defined as the intersec-
tion of the isolines u = v = 0.5, and following an outward
spiral trajectory in (left) and meandering in (right). Parame-
ters are the same as in Fig. 1 and Fig. 2 ε−1 = 18.0.

ward is due to Doppler shift since the core is seen as the
source of waves. This means that conduction would
be blocked since the spiral rotates more rapidly than
plane waves can propagate when the spiral period and
the minimum period compatible with plane wave prop-
agation merge for this critical value of ε [22]. The spi-
ral becomes unstable and breaks into newly born bro-
ken waves which will soon evolve into spirals waves
since they have broken ends. This leads to spatiotem-
poral chaos or irregularity within the excitable medium
as shown in Fig. 6 where the time variations of the ex-
citatory and the recovery variables are recorded at point
(10,10) in the excitable medium of size L = 100.

Figure 6. Time variation of the excitatory and the recovery
variable recorded in the medium at the location (10,10). The
dotted one is the variation of v.

4 Traveling Waves
This phenomenon can be attributed to an unstable fo-

cus by considering a traveling wave solution of (1),
u(z) = u(x+ ct) where c is the wave speed. Substitut-
ing this solution into (1) reduces the reaction-diffusion
equations to the following ODE system:

dw/dt = cw− (1/ε)u(1−u)[u− ((b+ v)/a)]

du/dt = w (2)
dv/dt = (1/c)(u3 − v),
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Using parameter values a = 0.75 and b = 0.06, ε−1 =
13.5, the numerical solution shown in Fig. 7 ap-
proaches the resting state in an oscillatory manner.
For those values of the parameter, the system can
have complex eigenvalues implying that the fixed point
(0,0,0) is an unstable focus for c2 − 4.32 < 0. This
condition is satisfied for some range of the spiral pe-
riod as it can be seen in the dispersion curve in Fig. 8.
That justifies the oscillatory behavior of the numerical
solution of (2). For other values of the parameter ε , the
solution approaches the resting state (0,0,0) in a non-
oscillatory manner if ε−1 = 50.0 for which the spiral
rotates rigidly around a circular core. If ε−1 = 20.0,
the recovery is also monotonic, but that does not nec-
essarily imply rigid rotation. Actually, the spiral tip
meanders following an epicycle-like orbit as shown in
Fig. 5(right). On the other hand, if ε−1 = 13.5 or
ε−1 = 14.5, the solution returns to the resting state
in an oscillatory manner as seen in Fig. 7; the sys-
tem undergoes a succession of super and subnormal
periods until complete recovery is achieved. However,
forε−1 = 14.5, unlike the case for ε−1 = 13.5 (shown in
Fig. 5 and Fig. 4) and despite the oscillatory type of re-
covery, core expansion does not occur and the tip does
not follow an outward spiraling trajectory. It traces
loops like those of an epicycle as the spiral wave rotates
and drifts away. Actually, we found that the tip moves
along a spiraling path in the range 13.0 < ε−1 < 13.8.
For ε−1 > 13.9, it meanders but not along a spiraling
trajectory. Thus, we note the important conclusion that
oscillatory recovery does not necessarily lead to core
expansion and spiraling tip.
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Figure 7. Recovering solitary traveling solution u(z) = u(x+
ct) of Eqs. (2), illustrating damped oscillatory (ε−1 =

13.5,14.5) and monotonic recovery (ε−1 = 20.0,50.0).

5 Dispersion Curve
This oscillatory recovery can be further investigated

by writing the solution of the reaction-diffusion system
as a superposition of two solitary waves with a small
perturbation term R which vanishes in the limit of infi-

nite spacing between the two waves:

u(z) = u(z− z1)+u(z− z2)+R (3)

where z1 = x1 − ct and z2 = x2 − ct, x1 and x2 de-
note the waves positions. For large |z1| and |z2|, the
tail of the wave determines the manner in which the
medium recovers to the resting state is: When the re-
covery is damped oscillatory, the tail of the wave u(z)∝
eη z cos(νz+ψ); when it is monotonic, u(z) ∝ eη z. In
both cases, the leading edge of the wave is assumed to
be of the formu(z) ∝ e−µ z. Equations for x1 and x2 are
derived using the solvability conditions which remove
singularities from R [Elphick et al, 1990]:

δx1

δ t
= c+aRe−µ(x1−x2) (4)

δx2

δ t
= c+aLe−η(x1−x2) cos(ν(x1 − x2)+ψ) (5)

where c is the propagation speed of a solitary wave.
The second term on the right hand side of (4) represents
the effect of the second wave on the propagation of the
first one. It is usually negligible in excitable media.
The second term on the right hand side of (5) represents
the effect exerted on the second wave by the refractory
wake of the first one. Using (4) and (5), the spacing
between the two waves λ = x1−x2 obeys the equation:

dλ
dt

= aLe−η λ cos(νλ +ψ) (6)

If ν ̸= 0, the excitable medium recovers in an oscilla-
tory way. Then, according to (6) an infinite number of
steady state solutions exist. This means that the dis-
tance between the wave-fronts takes one of possible
fixed values.
Those oscillations in the way of recovery to the resting

state would imply oscillations in the dispersion. This is
shown here by considering the times when wave-fronts
pass through a given location x. The solution of (5) is
then approximated by widely spaced impulses:

u(x, ti) = ∑
k

uk(ti(x))+R, (7)

where ti(x) is the instant at which the i-th impulse is at
x, and R is a small perturbation term which vanishes in
the limit of infinite spacing between the waves. Using
(7) in (1), we get

dti
dx

=
1
c0

+a′eη(ti−ti−1) cos[v(ti − ti−1)+ψ]+

+b′e−µ(ti+1−ti) (8)
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where η is the rate at which the wave-fronts tail off.
The second term on the right hand side of (8) repre-
sents the effect exerted on the i-th impulse by the re-
fractory wake of the preceding impulse. The last term
represents the effect of the succeeding impulse and is
negligible in excitable media. The coefficients a′ and
b′ require the evaluation of certain integrals which are
not shown here. Letti(x) = (x/c)+(i−1)T , where T is
the period of a constant speed wave-train. Then we get
to leading order,

c = c0 − c2
0a′e−η T cos[νT +ψ] (9)

For ν ̸= 0 in (9), damped oscillations occur in the dis-
persion curve. For monotonic recovery (ν = 0, a>0),
the wave speed is a monotonic increasing function of
wave spacing. If ν = 0 and a < 0, the recovery is said
to be non-monotonic and could exhibit one supernor-
mal period [Meron, 1991a], [Barkley, 1991]. In Fig. 8,
there are damped oscillations in dispersion curve of
the system (1) for ε−1 = 13.5 and ε−1 = 14.5. The
first supernormal period during which the excitability
is higher than that of the rest state is very pronounced.
However, for ε−1 = 50.0, as expected, the monoton-
ically recovering system is characterized by a disper-
sion curve with monotonic increase in the propagation
velocity until the limit set by the solitary wave velocity
is reached.

Figure 8. Dispersion curve: Instantaneous wave speed as
a function of period for ε−1 = 13.5,14.5,50.0 respectively
from bottom to top, computed by repetitively stimulating at
one of the ends of an open line.

6 Resonant Drift
Furthermore, we propose the Feedback Resonant Drift

Method to control the spatiotemporal chaotic behav-
ior or irregularity shown in Fig. 6. A recording point
is set at the upper right corner of the medium. Each
time the recorded variable u crosses a certain threshold
value 0.8, a small amplitude non-localized stimulation
is applied with amplitude 0.26 t.u., by adding it to the

right hand side of (1). We verified that the amplitudes
needed to eliminate all wave activity were between 2%
and 11% of the amplitude of a single shock that would
eliminate all wave activity. This single shock (with de-
fibrillation amplitude 0.055) would represent the sin-
gle shock defibrillation threshold. In Fig. 9, the system
is left with only one spiral to be eliminated at the un-
excitable boundaries before breakup occurs again and
generates further spiral waves. The directed drift due to
the perturbation pulses did not lead to elimination at the
upper boundary but at the left side of the medium. In
Fig. 10, the tip path is shown as the repetitive perturba-
tions are applied until the path ends at the left boundary.

Figure 9. Snapshots illustrating the evolution of the system
under perturbation pulses with amplitude 0.0057 and pulse
duration 0.26 t.u.

Figure 10. Tip trajectory when perturbations are applied.

This oscillatory behavior and the occurrence of su-
pernormal periods in the dispersion curve were ob-
served in wave train solutions of the one-dimensional
FitzHugh-Nagumo model [Rinzel and Maginu, 1984].
But, no core expansion has ever been reported before.
Also, the observation of expanding cores and spiraling
tips here answers the query of Meron [Meron, 1991b],
[Meron, 1989], [Meron, 1991a] and Winfree [Winfree,
1991], [Winfree, 1990] about the possible observation
of core expansion and oscillations in the dispersion
curve. Using FitzHugh-Nagumo kinetics with param-
eters chosen such that the equilibrium point is nearly
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a center, Winfree showed that the medium can then
support two stable rotors of different periods. The dis-
persion curve exhibited a damped oscillatory behavior.
However, core expansion was not observed, and mean-
dering along a spiraling path was not obtained.

7 Conclusion
This occurrence of ‘supernormal’ periods of excitabil-

ity during which the threshold of excitation is dimin-
ished was reported in electrophysiological measure-
ments in stimulated cardiac muscle [Spear and Moore,
1974]. The current that was needed to re-excite the
Purkinje fibers was reduced. We could attribute it to the
faster recovery of the threshold potential compared to
the slower recovery of the action potential that we have
seen here. We have also verified that than a smaller ad-
ditional depolarization is needed to reach the threshold
potential and it was brought about by a weaker depo-
larizing current.
Our results would imply that core expansion could be

one possible route to spiral breakup. We also offered
one effective way to eliminate wave activity, by apply-
ing feedback perturbations. This represents one way
that would help to eliminate cardiac arrhythmias or fib-
rillation by causing spiral waves to move outward to-
ward the unexcitable boundaries or non-cardiac tissue.
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