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Abstract
The paper presents the reliability analysis of stochas-

tic dry friction system. This system may appear in prac-
tice as a result of implementation of the quasi-optimal,
bounded in magnitude control law. The path integra-
tion method is used to obtain the reliability function,
the first passage time and the fatigue characteristics.
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1 Introduction
Safety and reliability are extremely important in de-

sign of different mechanical systems. A system’s re-
liability may be considered as the probability that no
system failure occurs within a given time interval. Of-
ten the reliability problem is associated with finding the
probability that a system’s response stays within a pre-
scribed domain, an outcrossing of which leads to im-
mediate failure. A problem of this type is called the
first passage problem [Dimentberg, 1988; Lin and Cai
1995; Roberts and Spanos 1990] and it has been exten-
sively studied by a number of authors. The first pas-
sage problem is directly related to a solution of the cor-
responding Pontryagin equation, written with respect
to the first excursion time T . Unfortunately, an ex-
act analytical solution to this problem, even for a lin-
ear system, is yet to be found. A few strategies have
been proposed over the years to deal with this type of
problems. One of them is based on an averaging pro-
cedure and further problem reformulation for the sys-
tem’s response amplitude or energy. The Markov prop-

erty of the energy envelope has been used to evaluate
the probability of the first passage time for a linear
system [Roberts 1976], systems with nonlinear stiff-
ness [Roberts 1978a] or nonlinear damping [Roberts
1978b]. A number of problems have been solved nu-
merically and analytically since then ([Bergman and
Heinrich 1982; Spencer and Bergman 1985; Spencer
and Bergman 1987; Koyluoglu et.al. 1994]).

This paper is devoted to a reliability investigation of
dry friction system. The path integration (PI) code
is validated by comparing some results to results of
Monte Carlo simulations as well as results, obtained
for an equivalent linear system. The latter make sense
only for ”weak” nonlinearity, i.e. for small values of
r (r << 1). Its asymptotic analysis was made in [Di-
mentberg et.al. 2000] with respect to the system’s en-
ergy. Since the available asymptotic techniques pro-
vides reliable estimates for nonlinear systems only in
the case of small nonlinearities it is decided to con-
duct a numerical investigation, comparing some ob-
tained results to the reliability results for an equivalent
linear system. The latter is constructed using values of
an equivalent viscous damping coefficient and effective
frequency. The path integration method has been used
earlier for these systems to estimate the stationary re-
sponse probability density function (PDF) of the state
space variables [Iourtchenko et.al. 2006]. Here the PI
method has been adapted for obtaining the reliability
characteristics of the considered system.



2 Problem Statement and Numerical Approach
2.1 Path Integration approach to reliability
The (SDOF) dynamic systems to be investigated in

this paper can all be written in the following form

Ẍ + g(X, Ẋ) = ξ(t), (1)

where g(·, ·) denotes a function to be specified in each
particular case, while ξ(t) throughout denotes a zero-
mean, stationary Gaussian white noise process satisfy-
ing E[ ξ(t) ξ(t + τ) ] = Dδ(τ) for a positive intensity
parameter D. Application of the external quasi-optimal
control policy leads to a dry friction law, whereas appli-
cation of the quasi-optimal control force results in para-
metrically controlled systems with a jumpwise varia-
tion of either the systems’s stiffness, moment of inertia
or both. The latter happens through a variation of the
pendulum’s length and such a system is well known as
a swing.
Equation (1) will be construed as an Itô stochastic dif-

ferential equation (SDE), that is,

dZ(t) = h(Z(t)) dt + b dB(t), (2)

where the state space vector process Z(t) =
(X(t), Y (t))T = (X(t), Ẋ(t))T has been introduced;
h = (h1, h2)T with h1(Z) = Y and h2(Z) =
−g(X,Y ); b = (0,

√
D)T , and B(t) denotes a stan-

dard Brownian motion process. From Eq. (2) it follows
immediately that Z(t) is a Markov process, and it is
precisely the Markov property that will be used in the
formulation of the PI procedure.
The reliability is defined in terms of the displacement

response process X(t) in the following manner, assum-
ing that all events are well defined,

R( T |x0, 0, t0) = Prob{xl < X(t) < xc;
t0 < t ≤ T |X(t0) = x0, Y (t0) = 0}, (3)

where xl, xc are the lower and upper threshold levels
defining the safe domain of operation. Hence the relia-
bility R(T |x0, 0, t0), as we have defined it here, is the
probability that the system response X(t) stays above
the threshold xl and below the threshold xc throughout
the time interval (t0, T ) given that it starts at time t0
from x0 with zero velocity (xl < x0 < xc). In general,
it is impossible to calculate the reliability exactly as it
has been specified here since it is defined by its state
in continuous time, and for most systems the reliability
has to be calculated numerically, which inevitably will
introduce a discretization of the time. Assuming that
the realizations of the response process X(t) are piece-
wise differentiable with bounded slope with probability
one, the following approximation is introduced

R(T |x0, 0, t0) ≈ Prob{xl < X(tj) < xc,

j = 1, . . . , n|X(t0) = x0, Y (t0) = 0}, (4)

where tj = t0 + j∆t, j = 1, . . . , n, and ∆t =
(T − t0)/n. With the assumptions made, the rhs of
this equation can be made to approximate the reli-
ability as closely as desired by appropriately choos-
ing ∆t, or, equivalently, n. Within the adopted
approximation, it is realized that the reliability can
now be expressed in terms of the joint conditional
PDF fX(t1)...X(tn)|X(t0),Y (t0)(·, . . . , ·|x0, 0) as fol-
lows, which is just a rephrasing of Eq. (4),

R( T |x0, 0, t0) ≈∫ xc

xl

· · ·
∫ xc

xl

f(··· )(x1, . . . , xn|x0, 0) dx1 · · · dxn.

(5)
Due to the Markov property of the state space vector

process Z(t) = (X(t), Y (t))T , we may express the
joint PDF of Z(t1), . . . , Z(tn) in terms of the transition
probability density function

p(z, t|z′, t′) = fZ(t)|Z(t′)(z|z′) =
fZ(t)Z(t′)(z, z′)/fZ(t′)(z′), (fZ(t′)(z′) 6= 0)

in the following way

fZ(t1)...Z(tn)|Z(t0)(z1, . . . , zn|z0) =
n∏

j=1

p(zj , tj |zj−1, tj−1).
(6)

This leads to the expression (z0 = (x0, 0)T , dzj =
dxj dyj , j = 1, . . . , n)

R( T |x0, 0, t0) ≈
∫ ∞

−∞

∫ xc

xl

· · ·
∫ ∞

−∞

∫ xc

xl

n∏

j=1

[

p(zj , tj |zj−1, tj−1)] dz1 · · · dzn,

(7)

which is the path integration formulation of the relia-
bility problem. The numerical calculation of the relia-
bility is done iteratively in an entirely analogous way as
in standard path integration. To show that, let us intro-
duce a reliability density function (RDF) q(z, t|z0, t0)
as follows,

q(z2, t2|z0, t0) =∫ ∞

−∞

∫ xc

xl

p(z2, t2|z1, t1) p(z1, t1|z0, t0) dz1,
(8)

and (n > 2)

q(zk, tk|z0, t0) =∫ ∞

−∞

∫ xc

xl

p(zk, tk|zk−1, tk−1)•

q(zk−1, tk−1|z0, t0) dzk−1, k = 3, . . . , n.

(9)



The reliability is then finally calculated approximately
as (T = tn)

R( T |x0, 0, t0) ≈
∫ ∞

−∞

∫ xc

xl

q(zn, tn|z0, t0) dzn.

(10)
The complementary probability distribution of the

time to failure Te, i.e. the first passage time, is given
by the reliability function. The mean time to failure
〈Te 〉 can thus be calculated by the equation

〈Te 〉 =
∫ ∞

0

R( τ |x0, 0, t0) dτ (11)

To evaluate the reliability function it is required
to know the transition probability density function
p(z, t|z′, t′), which is unknown for the considered non-
linear systems. However, from Eq. (2) it is seen that
for small t − t′ it can be determined approximately,
which is what is needed for the numerical calculation
of the reliability. A detailed discussion of this, and
the iterative integrations of Eqs. (8) and (9), is given
in [Iourtchenko et.al. 2006; Naess et.al. 2007]. Con-
cerning the integrations, there is, however, one small
difference between the present formulation and that de-
scribed in these references. In Eqs. (8) and (9), the inte-
gration in the x-variable only extends over the interval
(xl, xc). The infinite upper and lower limits on the y-
variable are replaced by suitable constants determined
by e.g. an initial Monte Carlo simulation.
If the system response Z(t) has a stationary response

PDF fZ(z) as t → ∞, it follows that the conditional
response PDF f{Z(tn)|Z(0), xl<X(tj)<xc; 0≤j≤n−1}(z)
also reaches a stationary density, say q∗(z), when tn →
∞. This means that the reliability process eventu-
ally becomes memoryless, and hence the RDF con-
verges q(z, tn|z0, t0) → q∗(z)Ke−νtn for some con-
stants K and ν as tn →∞. Also the numerical method
should reach stationarity in the conditional density.
This also implies that the numerically estimated relia-
bility function must be exponential, since the same rel-
ative amount of probability mass leaves the system at
every iteration. So in the end, the only thing one should
need for a good reliability estimate is the behavior in
the transient phase, and the exponential decay there-
after.

2.2 General comments about the numerical proce-
dure

The numerical calculations were performed for a
256× 256 mesh in the state space, with very high grid
resolution around the axes for the inertia controlled sys-
tem and swing system, because the PDFs have discon-
tinuities along the axes and high spikes at the discon-
tinuity that requires a well adapted spline representa-
tion [Iourtchenko et.al. 2006]. More specifically, the
grid resolution was determined by an exponentially de-
caying function away from each coordinate axis. Be-
cause of the discontinuities, there are no grid points on

the axes themselves. However, the interpolant will be
globally smooth and assume finite values also on the
axes. Hence, there is no true discontinuity in the in-
terpolant even if the gradients of the interpolant may
be very large at the axes. The time step was 0.01 for
all simulations, and the noise intensity D was set to
1.0. The initial choice of time step is determined by
the characteristic time constants of the dynamic sys-
tem, which can be either seen from the system equa-
tions or from a short Monte Carlo simulation of the dy-
namic response of the system. As is typically done for
verifying the convergence of numerical solutions, the
accuracy of the calculated PI solution may be checked
by changing repeatedly, if required, the size of the time
step, for example by a factor 2.
For all simulations, the reliability was computed using

the barriers xc = 2.5σx, xc = 3.0σx, and xc = 3.5σx.
The lower barrier is either xl = −∞, one-sided bar-
rier case, or xl = −xc for two-sided reliability. These
bounds were far enough out in the tails that interpo-
lation of the RDF from equations (8) and (9) was no
problem.
It should be mentioned that for the system studied in

this paper, the calculated reliability function displayed
a distinctive exponential behavior asymptotically, as
one would expect. That is, after some transient time,
the reliability function could not be distinguished from
a straight line when plotted on a logarithmic scale. In
addition, the PDF for the time to failure has a right
tail that is exponential with the same exponent, which
again is verified by plotting the PDF on a logarithmic
scale. The oscillatory behaviour of the PDFs of the
time to failure, as seen on the close ups, largely reflects
the transient dynamics of the systems due to initial con-
ditions.

2.3 Monte Carlo simulation
To check the numerical results, Monte-Carlo simula-

tions (MCS) have been run for a few selected cases.
A main problem is that the probability of crossing a
high reliability level is small, so the simulation will
have to run for a long time before this happens. Since
a good approximation of the PDF for the first pas-
sage time needs a large number of Monte-Carlo sim-
ulations, this easily becomes a very time consuming
method. The verification of the numerical results by
Monte Carlo simulations are therefore carried out on
two levels. First, the expected first passage time is es-
timated directly from simulated response time histories
for the lowest level (= 2.5 σ), where σ equals the stan-
dard deviation of stationary response. For all the mod-
els investigated in this paper, the estimated expected
first passage time obtained by MCS agreed with the
corresponding one calculated by PI within the accuracy
of the MCS estimate, that is, within a few per cent.
It is important to notice that estimating the full PDF,

and here especially the transient behavior, is very time
consuming with Monte Carlo methods without a para-
metric model. Path integration, however, calculates this



directly, and if only the transient behavior is needed,
the PDF can be found with high accuracy with a fairly
short simulation.
When comparing the results for the MC and PI meth-

ods, one should remember that the strengths and weak-
nesses of the numerical methods are also very different.
The main problem for the PI method, is that the PDFs
may have sharp discontinuities or peaks that makes the
interpolation difficult.

3 Results for a stochastic dry friction system
In this section some derivations made in [Dimentberg

et.al. 2000] for a stochastic system with dry friction are
briefly discussed. It is worth mentioning that for the
parametric systems the stochastic averaging procedure
results in an exponential response PDF for response
energy, whereas the dry friction system has an expo-
nent in power of the square root of the response en-
ergy. Therefore, for the parametrically controlled sys-
tems, the case of small nonlinearity cannot be caught
by the averaging procedure and needs to be investigated
numerically. For the system with dry friction it is pos-
sible to use an approximate analysis for a small value
of the dry friction coefficient. Early results on the use
of PI for an oscillator with dry friction are reported in
[Naess and Johnsen 1993].

3.1 The first passage time
Consider the following nonlinear system, subjected to

the zero mean, stationary Gaussian white noise ξ(t) in-
troduced above:

Ẍ + r sign(Ẋ) + Ω2X = ξ(t), 0 ≤ t ≤ tf .

< ξ(t)ξ(t + τ) >= Dδ(τ)
(12)

Applying the stochastic averaging procedure and fol-
lowing the derivations made in [Dimentberg et.al.
2000] the first passage time may be found as:

T (c) =
[Ei(2λ

√
c̄)− Ei(2λ

√
c) ]

2Ωλ2
−
√

c̄−√c

Ωλ
−

ln(c̄/c)
4Ωλ2

c =
E

D/4Ω
, c̄ =

Ē

D/4Ω
,

λ =
2
√

2µ

π
, µ =

r√
DΩ

.

(13)
where Ei(y) is an exponential integral function, D is a
noise intensity, Ē is a critical value of energy. Thus, an
analytical expression (13) may be used for reliability
estimates, keeping in mind that r should be small. This
result may be compared to one, reported in [Lin and Cai
1995], keeping in mind that the value of an equivalent
viscous damping coefficient is equal to:

αdf
eq =

16r2

3π2D
.

It can be seen from the comparison with the result
for the linear system [Lin and Cai 1995] that expres-
sion (13) has an additional second term, which is non-
negative. Moreover, the exponential integral function
(13) depends on the square root of the system’s en-
ergy, whereas the formula for an equivalent linear sys-
tem [Lin and Cai 1995] predicts dependence on the sys-
tem’s energy itself. Both these facts indicates that the
first passage time to failure for the dry friction system
should be less than that for an equivalent linear system.
Numerical simulations, conducted using the PI

method, have shown that the joint response pdf has a
single peak, at small values of r, which splits into two
peaks, moving away from each other, when the non-
linearity parameter r increases [Iourtchenko et.al.]. A
peak of the probability density of time to failure moves
left when value of r increases, which indicates dete-
rioration of the system’s reliability. Figure 1 and fig-
ure 2 present the reliability function for r = 0.15 and
r = 0.25 correspondingly for different values of the
crossing level p = xc/σx. These results show strong
dependence of the reliability function on r, i.e. an in-
crease of r increases the slope of the reliability func-
tion, consequently decreasing the time to failure. At
first glance, this may seem odd, but remember that an
increase in r leads to a decrease in σx, and therefore in
the critical level. On the other hand, an increase of the
crossing level leads, as expected, to an increase of the
first passage time value for a fixed value of r.
Table 1 presents results of numerical simulations for

the first passage time. Data in Table 1 have been com-
pared to the data obtained for an equivalent linear sys-
tem. Direct comparison of these results, for the same
level of energy dissipation in both systems, showed that
the dry friction system has significantly (at least twice)
smaller value of failure time than that of the equivalent
linear system, which indicates a relatively poor relia-
bility of the dry friction system.
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Figure 1. Reliability function of the dry friction system for r =
0.15.
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Figure 2. Reliability function of the dry friction system for r =
0.25.

3.2 The fatigue life
It is known [Bolotin, 1984] that the fatigue life or ex-

pected time for a system to work properly before failure
due to fatigue occurs may be found as:

1
T∗

=
∫

p(y)dy

Te(y)Ns(y)
(14)

where p(y) - the response pdf of crossing, Te(y) - the
effective period of the process, e.g. Te(y) = 2π/ωe

and

Ns(y) =

{
N0(q/y)m (y ≥ q)
∞ (y < q)

(15)

Here q is the threshold value. In the case, when Te(y)
is a constant, the formula (14) may be written as:

T0

T∗
=

∫ (
y

q

)m

p(y)dy, T0 = TeN0 (16)

The required pdf of crossing has been obtained by the
PI method, and used to calculate T0/T∗ value for dif-
ferent values of m and q. For the purposes of calcu-
lations the following values of parameters were taken:
T0 = 1, D = 1. These results are presented in Fig.3,

p 2.5σ 3.0σ 3.5σ

r

0.15 0.2167 0.6009 2.6885

0.20 0.1344 0.3697 1.7757

0.25 0.0814 0.2169 1.0834

Table 1. Expected time to upcrossing for the dry friction system.
All numbers to be×103.

Figure 3. Dimensionless fatigue life T0/T∗ for r = 0.15.

Figure 4. Dimensionless fatigue life T0/T∗ for r = 0.20.

Figure 5. Dimensionless fatigue life T0/T∗ for r = 0.25.

Fig.4, Fig.5 for values of r = 0.15, r = 0.20, r = 0.25
correspondingly.

These results indicate that the increase of nonlinearity
leads to decrease of fatigue life for given values of m
and q. It also can bees seen that higher values of m
provides longer fatigue life.



4 Conclusions
In the paper the authors have considered a reliability

problems for strongly nonlinear dry friction stochastic
systems. The numerical results presented in the pa-
per are obtained by the path integration method, which
was adjusted to handle reliability problems. The re-
sults were verified by Monte-Carlo simulations and the
results obtained by the path integration method for an
equivalent linear system. Generated results demon-
strated that the reliability of the system strongly de-
pends on the nonlinearity parameter r, especially for
low values of the upcrossing level. It has been found
that the dry friction system or the system with an ex-
ternal, bounded in magnitude control law, has poor re-
liability compared to its equivalent linear system, al-
though it is capable of reducing the system’s response
energy. Finally, the numerical investigation of the fa-
tigue life has been conducted.
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