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Abstract
Dynamic stability of elastic elements of thin-shelled

constructions under interaction with flow of fluid or gas
is studied. Subsonic regime is considered. Aerody-
namic load is determined by asymptotic aerohydrome-
chanics equations [Velmisov, 1986]. The nonlinear
model of elastic body is used to problems of aerohy-
droelastisity. In like statement on base of building the
functionals this problems earlier were not researched.
Statements and investigation methods offered for dy-

namical damping elastic bodies, being in contact with
subsonic flow of the fluid or the gas, lead to the study of
linked initial boundary problems to systems of partial
differential equations. Being based on the construction
of functionals, corresponding to these systems, solu-
tions’ stability conditions are obtained for some aero-
hydroelastical problems [Ankilov and Velmisov, 2000;
Velmisov and Reshetnikov, 1994], in particular for dy-
namics of elements of a plane channel, through which
fluid flows; elements of profile of a wing; pipeline.
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1 Stability of elastic elements of wing
Let us consider in more detail the planar problem of

aerohydroelasticity about small fluctuations, appearing
without a detachment flowing around thin-shelled con-
structions - the models of wing, which component parts
are n elastic elements-insertions.

Figure1. Wing profile.

Suppose on plane xOy, in which occur joint fluc-
tuations of elastic insertions and gas, length [c, d]
on axis Ox corresponds to wing, and lengths
[a2k−1, a2k] , k = 1÷ n, −∞ < c ≤ a2k−1 < a2k ≤
≤ a2k+1 < a2k+2 ≤ d < +∞, k = 1 ÷ n − 1 to
elastic insertions (fig.1).
In infinitely remote point a velocity of gas is V and has

the direction, coinsiding with the direction of axis Ox.
Let’s indicate: wk (x, t) and uk (x, t) (k = 1÷ n) are
the function of plate deflections toward axis Oy and
Ox correspondingly; ϕ(x, y, t) is the potential of the
gas velocity.
Potential of velocity ϕ satisfies Laplace equation

∆ϕ ≡ ϕxx + ϕyy = 0, (x, y) ∈ G = R2\ [c, d] , (1)

border conditions

ϕ±y (x, 0, t) = lim
y→±0

ϕy (x, y, t) = f±1 (x) ,

x ∈ (c, a1) ,
(2)

ϕ±y (x, 0, t) = wkt (x, t) + V wkx (x, t) ,
x ∈ (a2k−1, a2k) , k = 1÷ n,

(3)

ϕ±y (x, 0, t) = f±k+1 (x) ,
x ∈ (a2k, a2k+1) , k = 1÷ (n− 1) ,

(4)

ϕ±y (x, 0, t) = f±n+1 (x) , x ∈ (a2n, d) , (5)

where f±k (x) (k = 1÷ (n + 1)) are given functions
determining the form of undeformable parts of a wing,
and condition of unperturbed flow in infinitely removed
point

|∇ϕ|2∞ ≡ (
ϕ2

x + ϕ2
y + ϕ2

t

)
∞ = 0. (6)



Let’s present equations of small fluctuations of elastic
plates in the manner of
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(
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′ + 1

2wk
′2

)′
+ Mkük+

+gk (t, x, uk, wk, u̇k, ẇk) = 0,

−EkFk

[
wk

′
(
uk
′ + 1

2wk
′2

)]′
+ Mkẅk+

+EkJkwk
′′′′ + hk (t, x, uk, wk, u̇k, ẇk) =

= ρ
(
ϕ+

t (x, 0, t)− ϕ−t (x, 0, t)
)
+

+ρV (ϕ+
x (x, 0, t)− ϕ−x (x, 0, t)) ,

x ∈ (a2k−1, a2k) , k = 1÷ n.

(7)

Here a prime is used for the derivative with respect
to x; a point over letters denotes time derivative;
subindexes x, y, t designate partial derivatives with re-
spect to the corresponding variables; ρ is the density
of the gas; Ek are the modules of elasticity of plates;
Fk are the areas of cross-sections of plates; EkJk are
the rigidity of the plates; Mk are the specific mass
of the plates; the functions gk (t, x, uk, wk, u̇k, ẇk) ,
hk (t, x, uk, wk, u̇k, ẇk) represent nonlinear compo-
nents reactions of the basis or other nonlinear influ-
ences.
Using methods of the theory of complex variable

functions [Lavrentev and Shabat, 1987], the solution
of the problem (1) - (6) can be reduced to a system of
equations for unknown functions of plates deflections,
where right part of the second equation of system (7)
will be:

ρ
(
ϕ+

t (x, 0, t)− ϕ−t (x, 0, t)
)
+

+ρV (ϕ+
x (x, 0, t)− ϕ−x (x, 0, t)) = (8)

= − ρ

π

n∑

k=1

a2k∫

a2k−1

(ẅk(τ, t) + V ẇk
′(τ, t))K(x, τ)dτ−

−V ρ

π

n∑

k=1

a2k∫

a2k−1

(ẇk(τ, t) + V wk
′(τ, t))

∂K(x, τ)
∂x

dτ,

where x ∈ (a2i−1, a2i) , τ 6= x,

K(x, τ)=2 ln

∣∣∣∣∣

√
(x− c) (d− τ)+

√
(τ− c) (d− x)√

(x− c) (d− τ)−
√

(τ− c) (d− x)

∣∣∣∣∣ .

The boundary conditions on the ends of plates under
x = a2k−1 or x = a2k can be:
I. the rigid sealing

wk (x, t) = wk
′ (x, t) = uk (x, t) = 0;

II. the articulate sealing

wk (x, t) = wk
′′ (x, t) = uk (x, t) = 0;

III. the rigid fastening

wk (x, t) = wk
′ (x, t) = uk

′ (x, t) = 0;

IV. the articulate fastening:

wk (x, t) = wk
′′ (x, t) = uk

′ (x, t)+
1
2
wk

′2 (x, t) = 0.

Let us introduce the functional

Φ(t)=
n∑

k=1

a2k∫
a2k−1

{
Mk(u̇2

k+ẇ2
k) + EkJkwk

′′2+

+EkFk

(
uk
′ + 1

2wk
′2

)2
}

dx + I(t) + J(t),
(9)

I(t)=
ρ

π

n∑

i=1

n∑

j=1

a2i∫

a2i−1

dx

a2j∫

a2j−1

ẇi(x, t)ẇj(τ, t)K(x, τ)dτ,

J(t)=−ρV 2

π

n∑

i=1

n∑

j=1

a2i∫

a2i−1

dx

a2j∫

a2j−1

wi
′(x, t)wj

′(τ, t)K(x, τ)dτ.

Using the inequalities

n∑

i=1

n∑

j=1

a2i∫

a2i−1

dx

a2j∫

a2j−1

ẇi(x, t)ẇj(τ, t)K(x, τ)dτ ≥ 0,

n∑

i=1

n∑

j=1

a2i∫

a2i−1

dx

a2j∫

a2j−1

wi
′(x, t)wj

′(τ, t)K(x, τ)dτ ≥ 0,

a2i∫

a2i−1

wi
′′2(x, t)dx ≥ λ1i

a2i∫

a2i−1

wi
′2(x, t)dx, i = 1÷n,

w2
i (x, t) ≤ (a2i−a2i−1)

a2i∫

a2i−1

wi
′2(x, t)dx, i = 1÷n,

where λ1i are least own values of marginal prob-
lem [Gahov, 1977; Kollatc, 1968] ψIV (x) =
−λψ′′(x), x ∈ (a2i−1, a2i) , i = 1÷n with boundary
conditions, corresponding to mentioned types of fas-
tening, the following theorem is proved on the base of
research functional (9)
Theorem 1. Lets assume, that functions

wk(x, t), uk(x, t) satisfy one of the boundary
conditions I - IV and let’s execute inequalities

n∑
k=1

a2k∫
a2k−1

(u̇kgk (t, x, uk, wk, u̇k, ẇk)+

+ẇkhk (t, x, uk, wk, u̇k, ẇk)) dx ≥ 0,

EkJkλ1k >
ρKkV 2

π
,

Kk = sup
x∈(a2k−1,a2k)

n∑

i=1

a2i∫

a2i−1

K(τ, x) dτ, k = 1÷ n.

Then solution wk(x, t) equation systems (7), (8) are
stability with respect to outraging of the initial values
of ẇk(x, 0), w′′k(x, 0), u̇k(x, 0), u′k(x, 0) (k = 1÷n).



2 Stability of elastic elements of a plane channel
We consider the planar problem about dynamic stabil-

ity of elastic elements of the walls of an infinitely long
channel along which ideal incompressible fluid flows
(fig.2).

Figure2. Channel.

This problem is formulated in the following way

∆ϕ = 0, (x, y) ∈ R2 : |x| < ∞, y ∈ [0, y0] , (10)

ϕy (x, y0, t) = w+
kt (x, t) + V w+

kx (x, t) ,
x ∈ (b2k−1, b2k) , k = 1÷m,

(11)

ϕy (x, y0, t) = 0, x ∈ R\
(

m⋃
k=1

[b2k−1, b2k]
)

, (12)

ϕy (x, 0, t) = w−kt (x, t) + V w−kx (x, t) ,
x ∈ (a2k−1, a2k) , k = 1÷ n,

(13)

ϕy (x, 0, t) = 0, x ∈ R\
(

n⋃
k=1

[a2k−1, a2k]
)

, (14)

(
ϕ2

x + ϕ2
y

)
x=±∞ = 0, (ϕt)x=−∞ = 0,

y ∈ (0, y0),
(15)
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)
=

= −ρ (ϕt (x, y0, t) + V ϕx (x, y0, t)) ,
x ∈ (b2k−1, b2k) , k = 1÷m,

(16)
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+ M−
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′
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+E−
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=

= ρ (ϕt (x, 0, t) + V ϕx (x, 0, t)) ,
x ∈ (a2k−1, a2k) , k = 1÷ n.

(17)

Here w±k (x, t) and u±k (x, t) are the deflections func-
tions of the plates on the bottom and top walls of the
channel respectively.
Using methods of the theory of complex variable

functions, the solution of the problem can be reduced to
a system of equations for determination of w±k (x, t) ,
u±k (x, t). Using a functional of Liapunov’s type, is
proved the following theorem

Theorem 2. Lets assume, that functions w±k (x, t) ,
u±k (x, t) satisfy one of the boundary conditions I - IV
and let’s execute inequalities

m∑
k=1

b2k∫
b2k−1

(
u̇+

k g+
k

(
t, x, u+

k , w+
k , u̇+
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k

)
+
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dx+

n∑
k=1
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(
u̇−k g−k

(
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)
+

+ẇ−k h−k
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))
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E±
k J±k λ±1k >

ρV 2K±
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π
,

where

K+
0k = sup

x∈(b2k−1,b2k)

K+
1 (x), k = 1÷m,

K−
0k = sup

x∈(a2k−1,a2k)

K−
1 (x), k = 1÷ n,

K±
1 (x) =

m∑

i=1

b2i∫

b2i−1

K±(τ, x) dτ+
n∑

i=1

a2i∫

a2i−1

K∓(τ, x) dτ,

K± (x, τ) = ln

∣∣∣∣∣∣∣
e
−πa1

y0 + e
−πb1
y0

e
−πτ
y0 ∓ e

−πx
y0

∣∣∣∣∣∣∣
.

Then solution w+
k (x, t) , k = 1 ÷m, w−k (x, t) , k =

1 ÷ n, equation systems (10)-(17) are stability
with respect to outraging of the initial values of
ẇ±k (x, 0), w±k

′′
(x, 0), u̇±k (x, 0), u±k

′
(x, 0).
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