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1   Introduction 
The dynamic model of a parallel manipulator in free space can be 

mathematically represented, in Cartesian space, by a system of 

nonlinear differential equations: 

 ( ) ( ) ( ) fxGxxxVxxI =+⋅+⋅ &&&& ,  (1) 

( )xI being the inertia matrix, ( )xxV &,  the Coriolis and centripetal 

terms matrix, ( )xG  a vector of gravitational generalized forces, x the 

generalized position of the moving platform (or end-effector) and  f  

the controlled generalized force applied on the end-effector. Thus, 

 ( ) τxJf ⋅= T
 (2) 

where ττττ is the generalized force developed by the actuators and J(x) is 

a jacobian matrix. 

     The dynamic model of a parallel manipulator is usually developed 

following one of two approaches: the Newton-Euler or the Lagrange 

methods. Do and Yang [1], and Reboulet and Berthomieu [2] use this 

method on the dynamic modeling of a Stewart platform. Ji [3] 

presents a study on the influence of leg inertia on the dynamic model 

of a Stewart platform. Dasgupta and Mruthyunjaya [4] used the 

Newton-Euler approach to develop a dynamic model of the Stewart 

platform. This method was also used by Khalil and Ibrahim [5], Riebe 

and Ulbrich [6], Guo and Li [7], and Carvalho and Ceccarelli [8], 

among others. 

     The Lagrange method was used by Nguyen and Pooran [9] to 

model a Stewart platform, modeling the legs as point masses. Liu et 

al. [10], and Lebret et al. [11] follow a similar approach, but trying to 

increase the physical meaning of the obtained mathematical 

expressions. Geng et al. [12] used the Lagrange’s method to develop 

the equations of motion for a class of Stewart platforms. Some 

simplifying assumptions regarding the manipulator geometry and 

inertia distribution were considered. Lagrange’s method was also used 

by Gregório and Parenti-Castelli [13], and Caccavale et al. [14], for 

example. 

     Alternative methods have also been searched, trying to reduce 

computational load, namely the ones based on the principle of virtual 

work [15-16], and screw theory [17]. 

     In this paper the Lagrange’s formulation is used in the complete 

dynamic modeling of a 6-dof parallel manipulator. The involved 

computational effort is evaluated and compared with the one 

presented by a proposed simplified model. It is shown the proposed 

simplified model presents a much lower computational burden, being 

representative of the mechanical behavior of the manipulator. 

 

2   Manipulator Kinematic Structure 
The manipulator structure comprises a fixed (base) platform and a 

moving (payload) platform, linked together by six independent, 

identical, open kinematic chains (Figure 1). Each chain comprises two 

links: the first link (linear actuator) is always normal to the base and 

has a variable length, li, with one of its ends fixed to the base and the 

other one attached, by a universal joint, to the second link; the second 

link (fixed-length link) has a fixed length, L, and is attached to the 

payload platform by a spherical joint. Points Bi and Pi are the 

connecting points to the base and payload platforms. They are located 

at the vertices of two semi-regular hexagons, inscribed in 

circumferences of radius rB and rP, that are coplanar with the base and 

payload platforms. 

     For kinematic modeling purposes, two frames, {P} and {B}, are 

attached to the centre of mass of the moving and base platforms, 

respectively. 
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Fig. 1. Manipulator kinematic structure. 

 

     The generalized position of frame {P} relative to frame {B} may 

be represented by the vector: 
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where ( ) [ ]T
PPP

B
posP

B
zyx=x  is the position of the origin of 

frame {P} relative to frame {B}, and ( ) [ ]T
PPP

E
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B ϕθψ=x  

defines an Euler angle system representing orientation of frame {P} 

relative to {B}. The rotation matrix is given by: 
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S(⋅) and C(⋅) correspond to the sine and cosine functions, respectively. 

     The manipulator position and velocity kinematic models are well 

known, being obtainable from the geometrical analysis of the 

kinematics chains. The velocity kinematics is represented by the Euler 

angles jacobian matrix, JE, or the kinematic jacobian, JC. These 

jacobians relate the velocities of the active joints, the actuators, to the 

generalized velocity of the moving platform. Therefore, 
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Vectors ( )
B

P

B

B
posP

B
vx ≡&  and 

B
P

B
ω represent, the linear and angular 

velocity of the moving platform, relative to {B}, and 

Moving platform 

Base 



( )
E

oP

B
x& represents the Euler angles time derivative. 

 

3   Manipulator Dynamic Modeling 
Generally speaking, the dynamic model of a mechanical system may 

be obtained by means of the well known Lagrange equation: 
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where K and P are the system total kinetic and potential energies, h is 

a vector of generalized coordinates, and ζζζζ represents the generalized 

force applied to the system. Vectors h and ζζζζ are expressed in the same 

referential. 

    Considering the parallel manipulator, and expressing the Lagrange 

equation as a function of the moving platform generalized position, 
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where 
T

EB

P

|
f  represents the generalized force acting on the centre of 

mass of the moving platform. This vector may be written as: 
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Vector 
B

P
F represents the total force acting on the centre of mass of 

the moving platform, expressed in the base frame, {B}, and vector 

E

P
M represents the total moment acting on the moving platform, 

expressed using the Euler angles system. Thus, this representation 

does not allow a clear physical interpretation of 
E

P
M . 

    In order to simplify the used language, 
EB

P

|
f  will be referred as 

the generalized force vector acting on the centre of mass of the 

moving platform expressed using the Euler angles system. In a similar 

way, 
B

P
f  will be referred as the generalized force vector acting on 

the centre of mass of the moving platform expressed in the base frame 

{B}. That is, 
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where 
E

PT

A
B

P
MJM ⋅= −  represents the moment vector applied in 

the mobile platform and expressed in the base frame {B}. The 

corresponding actuating forces, ττττ,  may be obtained using the relation  
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3.1 Manipulator Kinetic Energy 
The total kinetic energy, K,  may be computed as the sum of the 

kinetic energies of all the rigid bodies: moving platform, 6 actuators 

and 6 fixed-length links. 
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where KP, 
iA

K  and 
iL

K  represent moving platform, actuator, and 

fixed-length link kinetic energies, respectively. 

       

3.1.1   Moving Platform Kinetic Energy  
The moving platform kinetic energy may be computed as the sum of 

two components: KP(tra) being the translational kinetic energy and 

KP(rot) being the rotational kinetic energy. 
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The translational kinetic energy may be easily computed using the 

following equation: 
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where IP(tra) is the translational inertia matrix of the moving platform 

and mP is its mass: 
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     In a similar way, the rotational kinetic energy may be easily 

computed by the equation: 
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B
rotP )(

I  representing the rotational inertia matrix, expressed in the 

base frame {B}. This matrix can be written as a function of the 

rotational inertia matrix expressed in the mobile platform frame {P}: 
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     Adding the translational and rotational components results in the 

total moving platform kinetic energy: 
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where 
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is the moving platform inertia matrix expressed in frame {B}. 

     On the other hand, using equations (8) and (19): 
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therefore,  
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is the rotational moving platform inertia matrix, expressed using the 

Euler angles system. 

     The total moving platform kinetic energy may be rewritten as: 
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where, 
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is the total moving platform inertia matrix, expressed using the Euler 

angles system. In a compact form, results: 

 TITI ⋅⋅=
B

P

T

E
P
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 [ ]( )
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3.1.2   Actuators Kinetic Energy  

As the actuators can only move perpendicularly to the base, their 

angular velocity relative to frame {B} is always zero.  If the actuators 

are assumed to be equal, and the centre of mass of each actuator, cmA, 

is located at a fixed distance, acm, from the actuator to fixed-length 

link connecting point (Figure 2), the position of the centre of mass 

relative to frame {B} is: 
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where 
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p  is a vector expressed in {B}. 

The linear velocity of the actuator centre of mass, 
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{B} and expressed in the same frame may be computed from the time 

derivative of the previous equation: 
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Fig. 2. Actuator centre of mass position.  

  

The kinetic energy of each actuator is 
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where mA is the actuator mass. 

     Thus, using velocity kinematics: 
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iF
J  representing the jacobian, JC, i-line. 

     Equation (32) may be rewritten in the following form: 
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where 
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m JJI =  is a matrix expressed in {B}. 

     On the other hand, introducing matrix transformation T in equation 

 (35) results in: 
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angles system. 

     It should be noted that matrices 
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I  represent the 

inertia matrices of a virtual moving platform that is equivalent, 

regarding its dynamic contribution, to each actuator. 

     Simultaneously considering the six actuators results in 
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where 

 
( ) C

T

CA
eqB

A
m JJI ⋅⋅=  (40) 

represents the inertia matrix of a virtual moving platform that is 

equivalent to the six actuators, expressed in the base frame. 

Expressing this matrix in the Euler angles system results in: 
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3.1.3 Fixed-length Links Kinetic Energy  

Total kinetic energy of each fixed-length link, 
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K , may be computed 

as the sum of two components: the translational kinetic energy, 
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K  and  the rotational kinetic energy, 
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K . 

     If the centre of mass of each fixed-length link, cmL, is located at a 

constant distance, bcm, from the fixed-length link to moving platform 

connecting point (Figure 3), then its position relative to frame {B} is: 
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Fig. 3. Fixed-length link centre of mass position. 

 

Equation (42) may be rewritten as: 
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p being a vector expressed in frame {B}. 

     The linear velocity of the fixed-length link centre of mass, 
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p& , 

relative to {B} and expressed in the same frame may be computed 

from the time derivative of the previous equation: 
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and, it can be rewritten as: 
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being  JCij the elements of line i column j of matrix JC. 

     The translational kinetic energy of each fixed-length link is: 
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where mL is its mass and 
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is a matrix expressed in the base frame. 

     Introducing transformation T in the previous equation results into: 
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where 
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is a matrix expressed in the Euler angles system. 

     It should be noted that matrices ( ) ( )eqB
traLi

I  and ( ) ( )eqE
traLi

I  represent 

the inertia matrices of a virtual moving platform that is equivalent to 

each translational fixed-length link. 

     On the other hand, the rotational kinetic energy of each fixed-

length link is: 
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where 
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ω  represents the angular velocity of the fixed-length link, 

relative to {B} and expressed in the same frame, and  ( )
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represents the fixed-length link rotational inertia matrix, also 

expressed in frame {B}. 

     It is convenient to express the inertia matrix of the rotating fixed-

length link in a frame fixed to the fixed-length link itself, 
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where  
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B
R is the orientation matrix of each fixed-length link frame, 

{Li}, relative to the base frame, {B}. 

     Fixed-length links frames were chosen in the following way: axis 

iL
x coincides with the fixed-length link axis and points towards the 

fixed-length link to moving platform connecting point, meaning that it 

is coincident with vector ai; axis  
iL

y  is perpendicular to 
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x and 

always parallel to the base plane (this condition being possible given 

the existence of a universal joint in the fixed-length link to actuator 

connecting point that negates any rotation along its own axis); axis 

iL
z  completes the frame according to the right hand rule, and its 

projection along axis zB is always positive. Therefore, matrix 

iL

B R becomes: 

 [ ]
iiii LLLL

B
zyxR =  (53) 

where 
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iii LLL yxz ×=  (56) 

So, the inertia matrices of the fixed-length links can be written as 
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LLL
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where 
xxL

I , 
yyL

I  and 
zzL

I are the fixed-length link moments of inertia, 

expressed in its own frame. 

     The angular velocity of each fixed-length link can be obtained 

from the linear velocities of two points. If these two points are taken 

as the fixed-length link to actuator, and the fixed-length link to 

moving platform connecting points, the following expression results: 
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     As the fixed-length link cannot rotate along its own axis the 

angular velocity along 
iLi

ax ˆ= is always zero and so vectors ai and 

BL
B

i
ω are always perpendicular. This enables equation  (58) to be 

rewritten as: 
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Therefore, the fixed-length link rotational kinetic energy will be: 
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where,  

 ( ) ( ) ( ) iiii
D

B
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is a matrix expressed in frame {B}. 

 

     Jacobian 
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J is given by: 

( )
( )

( ) ( )
( ) ( )










+−−

+−++−−

−−+−+−









−

−−+

−−−−

⋅=

Byi
P

iy
Bxi

P
ix

Bzi
P

iy
Bzi

P
ix

Ciix
Byi

P
izCi

Bxi
P

ix
Bzi

P
izCi

Byi
P

ix

Bxi
P

izCiiyCi
Bxi

P
iy

Bzi
P

izCi
Byi

P
iy

ixiy

CiizCiixCiixiz

CiiyizCiiyCiiy

D

papapapa

JapaJpapaJpa

paJaJpapaJpa

aa

JaJaJaa

JaaJaJa

Li

654

654

321

321

2

0

1

1

1
J

 

 (63) 

Using transformation T in equation  (61) results into: 
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where 

 ( ) ( ) ( ) TJIJTI ⋅⋅⋅⋅=
iiii
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rotL
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is a matrix expressed in the Euler angles system. 

     In a similar way as considered before, it should be noted that 

matrices ( ) ( )eqB
rotLi

I  and ( ) ( )eqE
rotLi

I  represent the inertia matrices of a 

virtual moving platform that is equivalent to each rotational fixed-

length link. 

 

3.2 Manipulator Potential Energy 
The total potential energy, P, may be computed as the sum of the 

potential energies of all the rigid bodies comprising the mechanical 

system. 

 ∑∑
==

++=
6

1

6

1 i

L

i

AP ii

PPPP  (66) 

where PP, 
iA

P  and 
iL

P  represent moving platform, actuator and fixed-

length link potential energies, respectively. 

     Thus, using the base frame, {B}, as a datum, and assuming 

gz ˆ−≡
B

, the moving platform potential energy can be written as: 

 
PPP

zgmP ⋅⋅=  (67) 

     On the other hand, knowing the position of the centre of mass of 

each actuator relative to frame {B} (Figure 2), its potential 

energy,
iA

P , can be written as: 
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−⋅⋅=  (68) 

     Finally, using equation (43), the potential energy of each fixed-

length link, will be: 
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3.3 Manipulator Dynamic Equations 
Using the manipulator kinetic and potential energy in the Lagrange 

equation, and separating the kinetic and gravitational force 

components, it would be possible to obtain the following matrix 

equations, with all matrices and vectors being expressed in the Euler 

angles system: 
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E
I  represents system inertia matrix, 

E
V  represents system Coriolis 

and centripetal terms matrix, and 
E

G  represents system gravitational 

terms vector. Vector ( )
EB

kin

P

|
f  represents the kinetic part of the 

generalized force acting in the moving platform, and ( )
EB

gra

P

|
f  

represents the gravitational component. 

     It should also be noted that: 
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     Rigid body inertia matrices may be directly obtained from the 

kinetic energy expressions, computed previously. Coriolis and 

centripetal terms matrices can be computed throughout the known 

inertia matrices. Finally, gravitational force component may be 

obtained using system potential energy. 

     Generally speaking, if I(x) is an inertia matrix, then, it is known, 

the respective Coriolis and centripetal terms matrix, ( )xxV &, , may be 

computed as [11]: 
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where U is given by 
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Matrix ( )Tx&⊗ℑ  is 6×36, and ( ) xxI ∂∂  is 36×6. Symbol ⊗ 

represents Kronecker product. 

      

3.4 Simplified Dynamic Model 
Computation of the fixed-length links dynamic contribution requires a 

high computational effort. Thus, a simplification to the presented 

complete dynamic model is now proposed. 

     Each fixed-length link is modeled as a zero-mass virtual link 

connecting two point masses located at its ends. This is a reasonable 

simplification as the fixed-length links are connected to the moving 

platform and to the actuators by steel universal joints. 

     So, the fixed-length link kinetic energy will be: 

 ( ) ( )rotLtraLL iii

KKK +=  (80) 

Preserving the centre of mass location, results in: 
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where mL1 is a point mass located at the connection point between the 

moving platform and the fixed-length link, and mL2 is a point mass 

located at the connection point between the actuator and the fixed-

length link: 
21 LLL

mmm += . 

     Position and velocity of the centre of mass expressed in {B} are, 
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     Rotational kinetic energy will be: 
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where 
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and bLa −= ; ( ) 1

212

−+⋅⋅=
LLL

mmmLb . 

     It should be noted this is equivalent to consider mL1 and mL2 as part 

of the moving platform and actuators, respectively. Therefore, the 

fixed-length links need not be modeled as independent rigid bodies, 

being their masses distributed between the moving platform and 

actuators: 
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     Table 1 presents the computational effort involved in the 

computation of the complete dynamic model. That is, the number of 

arithmetic operations involved in the computation of the Inertia and 

Coriolis and centripetal terms matrices (gravitational terms are not 

presented, as they present negligible computational burden).  

     It should be noted the simplified model is computationally much 

more efficient, as the computation of the matrices requiring the largest 

relative computational effort: the Inertia and Coriolis and centripetal 

terms matrices associated with the fixed-length links are not needed. 

Table 1. Number of arithmetic operations involved in the computation of the 

Inertia and Coriolis and centripetal terms matrices. 

 Coriolis and centripetal 
matrices terms 

Inertia matrices terms 

 Add. Mult. Div. Add. Mult Div. 
Mobile platform  310 590 0 36 90 0 

Six actuators  3028 4403 30 297 384 12 

Translating links 4506 9474 36 378 1038 30 

Rotating links  13080 22266 42 900 1758 18 

Total operations 20924 36733 108 1611 3270 60 

 

4   ;umerical Example 
A 6-dof parallel manipulator presenting the kinematic and dynamic 

parameters shown in Table 2 was considered. 
 
Table 2. Manipulator parameters. 

Para. Value Para. Value Para. Value 

rB 1.500 m mP 1.430 kg ILxx 0.0 kg⋅m2 
rP 0.750 m mA 0.123 kg ILyy 0.1 kg⋅m2 

L 1.837 m mL 0.389 kg ILzz 0.1 kg⋅m2 

φB 15º IPxx 0.2 kg⋅m2 mL1 0.194 kg 

φP 0º IPyy 0.2 kg⋅m2 mL2 0.194 kg 

  IPzz 0.4 kg⋅m2 bcm 0.918 m 
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Fig. 4. Actuators trajectories. 

 

A trajectory was specified in task space. The moving platform initial 

position is P1 = [0, 0, 2000, 0, 0, 0] (mm; deg). The moving platform 

is then displaced to point P2 = [-100, -200, 2500, 15, -15, 15] (mm; 

deg), and finally it returns to point P1. 
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Fig. 5. Actuators forces: complete vs simplified models. 

 

     Third order trigonometric splines were interpolated between the 

specified points, in order to obtain smooth and continuous trajectories. 

Figure 4 shows the corresponding actuators trajectories. 

     Figure 5 shows the actuators developed forces necessary to follow 

the specified trajectories. It should be noted the computed actuators 

forces are similar for both the complete and the simplified dynamic 

models, illustrating the suitability of the proposed simplified model. 

 

 

5   Conclusion 

Dynamic modeling of parallel manipulators presents an inherent 

complexity. Despite the intensive study in this topic of robotics, 

mostly conducted in the last two decades, additional research still has 

to be done. 

     In this paper the complete dynamic model of a 6-dof parallel 

manipulator was presented, based on the Lagrange’s formulation. The 

approach is completely general, and can be used as a dynamic 

modelling tool applicable to any mechanism. 

     The involved computational effort was evaluated and compared 

with the one presented by a simplified model. The proposed 

simplified model presents a much lower computational burden, being 

representative of the mechanical behavior of the manipulator. 
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