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Abstract
In this article we deal with the theoretical investiga-

tion of pattern formation in a planar dc gas-discharge
system with a high-ohmic electrode. In particular, we
are interested in a description of electric breakdown in
the low-current Townsend mode of discharge opera-
tion. Using the adiabatic description of electrons and
two-scale expansion one can show that the discharge
in this mode is governed by a two-component reaction-
diffusion system, which provides a quantitative system
description on the macroscopic time scale. On this
base ionization fronts being nontrivial solutions of this
reaction-diffusion system are discussed in details. In
particular, velocity and initial condition selection are
investigated in one- and two spatial dimensions.
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1 Introduction
The understanding of complex dynamical systems is

one of the most important subjects in modern physics.
In particular, the spontaneous formation of patterns in
the systems far from thermal equilibrium, e.g., self-
organized lighting current patterns in laterally extended
systems has been the subject of substantial interest over
the last decades. However, the nature of pattern for-
mation in different systems is not always clear, despite
of the large variety of models developed to describe
it. In particular, despite the good knowledge of the
underlaying microscopic processes in plasma, the ob-
served macroscopic patterns ,e.g., anode spots are not
understood to large extent. One reason is that typically
the current patterns are threedimensional objects that
evolve on a time scale of a millisecond or longer. In
contrast, the smallest time scale that should be taken
into account, e.g., in the popular drift-diffusion approx-
imation, is the electron travel time that is of order of
10 nanoseconds for the systems in question. A direct
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Figure 1. Schematic plot of the experimental set-up. Explanations

are given in the text.

numerical solution of the plasma transport equations
is therefore very time consuming or even impossible.
The alternative is to develop an appropriate reduced
discharge model.
In [2] such a reduction is developed on the base of

classical drift-diffusion discharge model for the pla-
nar dc gas-discharge system with a high-ohmic elec-
torde [12; 13; 18] in low-current Townsend mode
of operation. The investigated system, shown in
Fig. 1, consist of a high-ohmic semiconductor cath-
ode (chromium-doped gallium arsenide cooled toT =
100K) contacted from one side with a semitranspar-
ent gold layer, a gas gap of width source filled with,
e.g., nitrogen at a pressure ofp ≈ 300hPa, and an in-
dium tin oxide (ITO) anode on a glass substrate, mak-
ing the anode transparent with respect to visible light.
The resistivity of the semiconductor takes values of
ρ ≈ 105 − 109Ωcm and can be controlled via the inter-
nal photo effect by illumination. The system is supplied
with an external voltageU0 of several kV, whereas
the global current is limited by a series resistorR0 of
10MΩ. The luminance distribution in the discharge gap
is known to be locally proportional to the current den-
sity distribution [3] and can be recorded through the
ITO electrode by a charge carrier device (CCD) cam-
era.
When the supply voltageU0 is increased beyond the



ignition voltage, various forms of spatially inhomo-
geneous self-organized luminance patterns can be ob-
served in the discharge gap [5; 4; 10]. Here, in contrast,
we concetrate on the system behaviour in low-current
Townsend mode of operation.
Let us first suppose that by proper choice of the sup-

ply voltage the system is prepared to operate near to the
breakdown point, that is, the voltage applied to the gas
almost equals the Townsend breakdown voltageUb. In
this mode the current is negligible and is often localized
in several narrow channels caused by inhomogeneities
of the system. The channels serve as seed current fluc-
tuations for the breakdown. The supply voltage is then
suddenly increased to a larger valueUs, Us−Ub ≪ Ub.
Breakdown in a system like Fig. 1 transfers it to a state
that is assumed to be in the Townsend mode. In the case
that the current density is uniform, it is determined by

j = j0 =
Us − Ub

ρdc

,

whereρ is the specific resistivity of the high-ohmic bar-
rier anddc is the semiconductor width. So, the break-
down can be considered as a transition between the
states withj = 0 andj = j0.
Using adiabatic description of electrons and two-scale

expansion on can demonstrate [2], that in the low-
current Townsend mode the discharge is governed by
a two-component reaction-diffusion system, that incor-
porates only radial coordinates and slow time evolu-
tion:

τu∂tu = d2
u∇

2
⊥u + uv, (1)

τv∂tv = d2
v∇

2
⊥v + 1 − u − v. (2)

Here u = u(x, y, t)–a normalized current density,
u = j

j0
, v = v(x, y, t)–a normalized overvoltage,

v = δU
Us−Ub

, τu, τv–characteristic time scales,τu =

τi/s, τv = τc, d2
u, d2

v–diffusion lengthes,du =
√

λed
s

,

dv = dc√
3
,s ≪ 1 is the dimensionless overvoltage pa-

rameter;λe is the electron diffusion length;τi is the ion
travel time andτc is the RC time of the circuit (char-
acteristic cathode time). Our goal now is to investigate
the nontrivial solutions of system (1)-(2), so-calledion-
ization fronts, as well as to determine which class ion-
ization fronts belong to and find the propagating veloc-
ity. We discuss these problems below, starting with the
case of one spatial dimension.

2 Ionization Fronts in 1D
For the sake of simplicity first of all let us introduce

dimensionless timet := t/dv and space variablesx :=
x/dv and rewrite the system (1, 2) in the form

τut = d2uxx + uv

vt = vxx + 1 − u − v.
(3)
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Figure 2. Numerical results [Eqs. (3)] for the form of ionization

fronts for different system parameters.u mponent is presented. (a)

τ = 5 andd = 4, i.e., both time and space scales are determined

by the gas; (d)τ = 0.2 andd = 0.25, both time and space scales

are determined by the cathode. In all cases the Neumann boundary

conditions were used. We started fromu = v = 0 and added a

small fluctuation ofu at the origin. The fluctuation quickly changes

to a stable front.

where the constantd2 denotes a ratio of the diffusion
lengthsd = d2

u/d2
v, whereasτ represents a ratio of the

characteristic time scales andτ = τu/τv.
The system (3) has two stationary homogeneous equi-

librium solutions. The solution (u = 0, v = 1) cor-
responds to a vanishing current and peak overvoltage,
and is referred to as theovervoltage state. The sec-
ond solution (u = 1, v = 0) describes a stationary
Townsend state.
The non-uniform breakdown, as a possible solution

of Eqs. (3), occurs in the form ofionization fronts.
They turn out to be transition waves between unsta-
ble and stable system states that propagates along the
electrodes. In the literature propagation of such fronts
is often referred to asa front propagation into unstable
state[7; 17]. Such fronts arise in different physical sys-
tems. Here we only mention Rayleigh-Bénard [9] con-
vection or dielectric breakdown fronts [8]. Although
most of the fronts mentioned above are described by a
one-component nonlinear diffusion equation, two com-
ponent models can also be found [8; 15].
In the general case of Eqs. (3) no analytical solutions

can be found and the numerical solutions are instead re-
ferred to. A small local initial current fluctuation leads
to an exponential increase in the current. Furthermore,
the instability develops in a nonlinear way: an ioniza-
tion front propagates away from the initial perturbation.
Finally the uniform state withj = j0 (u = 1, v = 0)
is established on the whole electrodes area, but plasma
edges where boundary conditions affect the final cur-
rent distribution. Two typical examples of front behav-
ior for different parametersd andτ of the system are
shown in Fig. 2. Space-time plots for theu-component
are presented. One can see that in addition to mono-
tonic fronts (Fig. 2 (a)), oscillating fronts can be ob-
served (see Fig. 2 (b)). More complicated scenarios ap-
pear if there is more than one initial fluctuation. Several
fronts are produced, they collide and merge with each
other in the course of the collision process. At the end,
however, we always have only one front that transforms
the system into the uniform Townsend state. Numerical



simulations of the system (3) show that the evolution to
the stationary Townsend state (u = 1, v = 0) can be ei-
ther monotonic or oscillatory. So, our next goal is to
determine for which system parameters (d andτ ) the
system produce these regimes. To this end let us move
to a frame moving with a constant velocityξ = x− ct,

d2uξξ + τcuξ + uv = ut

vξξ + cvξ + 1 − u − v = vt,

whereu = u(ξ, t), v = v(ξ, t).
Let us consider a stationary solution of this system

and a small perturbation of the stationary solutionũ =
(ũ, ṽ), i.e.,u = 1 + ũ, v = 0 + ṽ. Then the equation
for (ũ, ṽ) becomes:

d2ũξξ + τcũξ + ṽ = 0

ṽξξ + cṽξ − ũ − ṽ = 0,

After decomposing̃u into modes̃u ∼ aeλξ, λ ∈ C we
get the equation

Aλa = 0 (4)

with

Aλ =

(
λ2d2 + τcλ 1

−1 λ2 + cλ − 1

)
.

The system (4) allows for a nontrivial solution if a com-
patibility condition

det(Aλ) = d2λ4+c(d2+τ)λ3+(τc2−d2)λ2−τcλ+1 = 0
(5)

holds. This equation is a polynomial of the fourth or-
der, so it can possesses at most four roots, which, de-
pending on coefficients, can be either complex or real.
If Im(λ) = 0 the ionization front is monotonic and is
oscillatory otherwise. So, if we know the velocity for
givend andτ one can define the front behavior, ana-
lyzing Im(λ).
In order to calculate the front velocity numerically,

one can, for example, derive the current as an integral
of theu = j/j0 over a space. Then one can obtain the
front velocity as time derivative of this integral. An ex-
ample of two typical front velocities corresponding to
four different front types is shown in Fig. 3. One can
see that for different system parameters the front veloc-
ity are of two orders of magnitude. Moreover, oscillat-
ing fronts move faster than monotonic fronts. Although
the velocity of the ionization front is simple to find nu-
merically, the question arises, whether some analytical
results can be obtained? This problem is discussed in
detail in the next section.
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Figure 3. Velocities of ionization fronts calculated for four typical

front forms as a function of a time: (a)d = 4, τ = 5, monotonic

front; (b)d = 0.25, τ = 0.2, oscillating front. Initially the front

velocity increases in time, what corresponds to the region,where the

ionization front is formed. After the front formation the velocity con-

verges to the constant value, depending on system parameters.

3 Velocity selection problem
Suppose that initially the system is in an unstable state

except of some spatially localized region. The ques-
tion is, what will be the long-time (t → ∞) dynami-
cal properties and velocity of the nonlinear front which
will propagate into the unstable state? Are there classes
of initial conditions for which the front converges to
some unique asymptotic statec∗? If so, what can be
said about the asymptotic front properties and conver-
gence to them?
To address these questions, let us linearize the basic

system (3) about the unstable stateu = 0, v = 1. The
linearized system reads:

τũt = d2ũxx + ũ

ṽt = ṽxx − ũ − ṽ,
(6)

where(ũ, ṽ) are the small perturbations ofu = 0, v =
1, i.e., u = 0 + ũ, v = 1 + ṽ. From this point on
we will have to deal only with the first equation of (6),
because it is not coupled with̃v. This equation is a lin-
ear diffusion equation with a source term, well known
in the literature. Moreover, it is identical to the lin-
earization of the classical nonlinear diffusion equation
investigated by Fisher and Kolmogorov [16; 7; 17]. So
one can try to apply the classical methods and results
to the system (3).
Due to linearity of the equation foru for long times

the profile in the leading edge will take the form̃u ∼

exp(ikx − iωt), whereω = ω(k) is a dispersion func-
tion,

ω(k) =
ı(1 − d2k2)

τ
. (7)

Notice thatk andω(k) can be complex:ki := Im(k)
is associated with the spatial decay of the front en-
velope andkr := Re(k) with the oscillations, since
Re(eıkx) = e−Im(kx) cos

(
Re(kx)

)
.

Sincek is in general complex, the dynamical selection
of both its real and complex parts must be analyzed.



The selection of a particular ”mode” Re(k) can be un-
derstood as follows: For fixed values ofki = ki0 the
growth rateωi := Im(ω(k)) is a function ofkr only
and has a maximum atkr = 0. Hence if one considers
a superposition of profiles of the formexp(ikx − iωt)

with the same value of the spatial decayki = k†
i , the

long-time appearance of the profile will be dominated
by the modekr corresponding to themax(ωi), i.e., for
which ∂ωi/∂kr = 0 and∂2ωi/∂k2

r < 0. So, in order
to understand the selection of the spatial decay rateki

it is enough to consider for each value ofki only the
maximum rate mode. In other words,kr is considered
to be an implicit function ofki through the condition
∂ωi/∂kr = 0. Thus the envelope velocity

c := c(ki) =
ωi

ki

=
1

τki

+
d2k

τ
(8)

is the function ofki only. As can be seen from Eq. (8)
the envelope velocity is a parabola-like function with a
minimum atkmin

i = 1/d. Let us first check the sta-
bility of both branches of this function described by
Eq. (8). For this aim we move to the frame moving
with the envelope velocityξ = x − ct. In the lead-
ing edge regioñu ∼ α(t) exp(−kiξ), where the spatial
decayki ≥ 0, so one obtaines

α̇(t) =

(
d2

τ
k2

i − cki +
1

τ

)
α(t).

Then the stability conditions forc are

ki ≥ 0

f(ki, c) =
d2

τ
k2

i − cki +
1

τ
≤ 0;

It is easy to show that the latter conditions are satis-
fied if f(k∗

i , c) ≤ 0, wherek∗
i = cτ/2d2 is a mini-

mum of the functionf(ki, c). In its turn, the inequality
f(k∗

i , c) ≤ 0 is satisfied if and only ifc ≥ 2d/τ . Thus,
the envelope velocity is stable only on the left branch
of the parabola (8), i.e., forki ≤ 1/d. To understand
the essence of the dynamical mechanism of the veloc-
ity selection let us imagine a hypothetical front consist-
ing of two pieces of the formexp(ıkx − ıωt) with two
different values ofki and velocitiesc (see Fig. 4 (a)).
As sketched in Fig. 4, the line drawn with a red line
drops off slower than the blue piece, aska < kb (see
Fig. 4 (a, b)). On the other hand, as Fig. 4 (a) indi-
cates, the red profile moves faster than the blue ones
(ca > cb). Nevertheless, as Fig. 4 (b) demonstrates, the
slowest moving part of the profile expands in time, i.e.,
becomes dynamically dominant. That is, fort → ∞

the velocityc∗ = 2d/τ , corresponding to the smallest
wave numberkmin

i = 1/d is seems to be selected.
Notice, that this conclusion is based on two facts,

namely (a) the fastest profile has the slowest spatial de-
cay and (b) the fact that the part with the fastest spatial
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Figure 4. Intuitive illustration of velocity selection. (a) Typical be-

havior ofc(ki). The behavior of the fronts, corresponding to points

(ka, ca) and(kb, cb) are shown in figures (b) and (c); (b) The

lower part of the envelope of a front profile, drawn with a blueline

corresponding to the point(kb, cb) in figure (a). It moves slower

as a red line, corresponding to(ka, ca), but falls off steeper. The

figure demonstrates how the crossover point moves higher with time,

so that the profile becomes dominated by the slowly moving part; (c)

If the slowest profile with(kb, cb) is not one to the right, the fastest

profile emerges.

decay isto the rightof the one with the slower spatial
decay. That is, the slowest profile dominates because
it is in front of the faster one. Indeed, if both lines are
interchanged so that the faster one is to the right, as
shown in Fig. 4 (c), the faster one dominates the long-
time dynamics.
These observations imply that initial conditions are

important: only if the initial condition profileu(x, 0)
drops off faster thanexp(−kmin

i x) the asymptotic
front velocity is equal to the minimum value of (8), i.e.,
c∗ = 2d/τ . Otherwise, ifu(x, 0) ∼ exp(−αx), where
α ≤ kmin

i , the asymptotic velocity is simply

c = c(α) =
d2α

τ
+

1

τα
> c∗.

In the former case the initial condition is refereed to as
sufficiently localizedwhereas in the latter case they are
said to beflat [7].
In the following the initial conditions are assumed

to be sufficiently localized. In this case, as discussed
above, the asymptotic velocity is given by

c∗ =
ωi

ki

=
2d

τ
,

∂ωi

∂kr

= 0,
∂2ωi

∂k2
r

< 0. (9)

These equations determinethe linear-marginal stable
velocity c∗ as well as the wave numberkmin

i at that
point. The corresponding front is said to bepulled or
marginally stable[6; 16; 7]. The analysis shows why
the front velocity approaching the asymptotic value is
based on the assumption that the dynamically relevant
branch ofc(ki) corresponds to the smallest rootkmin

i

for solving the equation (9). This occurs because an
asymptotic spatial decay

ũ ≃
∑

j

Aj(c)e
−ık

j

i
x

will be dominated by the root with the smallest value of
ki, say,kmin

i = k1
i , whenever the corresponding factor



A1(c) 6= 0. Nevertheless, it may happen that at some
particular valuec† one has

A1(c
†) = 0, (10)

so that asymptotic spatial decay is not given bykmin
i =

k1
i , but instead by the next root withk2

i > k1
i . The dy-

namical implications of this can be understood immedi-
ately within the same context as those used for the case
of linear marginal stability. Namely, the front moving
with a velocity c† drops off faster in space than any
other front profile with velocityc > c∗. On the other
hand if the velocityc† satisfies Eq. (10), all fronts with
c < c† are unstable against ”invasion” by the profile
with c† and the asymptotic front velocity for sufficient
localized initial conditions becomesc†. So,c† is also
the velocity at which front profiles aremarginaly sta-
ble. However, in this case the smallest rootkmin

i does
not dominate the asymptotic spatial decay of the front
profile and the asymptotic front behavior depends on
the properties of the whole front. Therefore the veloc-
ity c† is referred to asthe nonlinear marginal velocity
and the corresponding front profile is said to bepushed
following [16; 7].
Although the physical understanding for the nonlinear

marginal stability described above is quite simple, the
analytical prediction ofc† is much more complicated.
However, sometimes it is possible to do for nonlinear
diffusion equation with some spatial type of nonlinear
term [16]. For the system (3) we refer to a numerical
solution.
The system (3) shows that both pulled and pushed

fronts can be found. Numerical simulations show that
monotonic fronts, occurring in (3) are pulled, whereas
the oscillatory ones are pushed. In [7] it has been
proven that for nonlinear diffusion equation monotonic
fronts propagating with the asymptotic velocityc∗ are
stable, what is in agreement with our numerical results.

4 Ionization fronts in 2D
Qualitatively, the behavior of the general solution

in two-dimensional space is the same as in one-
dimension. An initial current perturbation changes to
stable ionization front. The latter propagates away
from the initial perturbation and quickly changes to a
quasi-one-dimensional front. The structure of the tran-
sition region is also the same as in the one-dimensional
case: apart from monotonic fronts, oscillatory behavior
can also be found. An example of both front types is
shown in Fig. 5 Figure 5 (a) shows a cross-section of
the two-dimensional monotonic front for a fixed time
moment. The red surface presents theu = j/j0 dis-
tribution, whereas the blue surface describes the over-
voltagev. An example of the oscillatory front is shown
in Fig. 5 (b). As in the case of one dimension the
fronts move with a constant velocity, that depends on
system parameters and is independent on initial fluc-
tuation if it is well-localized. In contrast to the one-

(a) (b)

Figure 5. Two dimensional ionization fronts.u = u(x, y, t)
(red) as well asv = v(x, y, t) (blue) distributions are shown.

(a) monotonic front, calculated att = 1500. Parameters:d =
5.2/3.5, τ = 4.5/0.91, L = [0, 143] × [0, 143], dx =
0.01, dt = 0.03; (b) oscillatory front, calculated att = 1100.

Parameters:d = 1.7/5.7, τ = 4.1/9.7, L = [0, 87.7] ×
[0, 87.7], dx = 0.01, dt = 0.03. In both cases the Neumann

boundary conditions were used.

dimensional front, the velocity in two-dimensions de-
pends also on the front curvature. On the other hand,
the two-dimensional front rather quickly changes to a
quasi-one-dimensional front, moving with the asymp-
totic velocity c∗ for monotonic andc† for oscillatory
fronts.
In the case of several initial fluctuations, the front be-

havior is also similar to the one-dimensional case: sev-
eral fronts are produced, they collide and merge with
each other throughout the collision process. At the end,
however, there is only a single front that transforms the
system into the uniform Townsend state.

5 Conclusion
We investigated electric breakdown and transition to

the Townsend discharge mode for a gaseous plane-
parallel discharge cell. The key problem is that the ex-
perimental phenomena are observed on a macroscopic
time scale (of the order of10−3 s or longer), whereas
the drift-diffusion approximation is on a microscopic
time scale. A direct numerical solution of the full 3D
drift-diffusion equations on macroscopical time scales
is very time consuming or even impossible and a re-
duction of the drift-diffusion model is desirable. Such
a reduction is developed using the fact that the axial
dimension of the discharge cell in question is small as
compared to the radial dimension [2]. Two-scale ap-
proach allows the axial and radial effects to be sepa-
rated. The resulting two-component reation-diffusion
system possesses nontrivial solutions in form of ion-
ization fronts. Under certain system parameters the
one- and two-dimensional ionization fronts can be ei-
ther monotone or oscillatory and move with a constant
velocity. This velocity depends on front type and the
initial distribution. Moreover, if the initial conditions
are well-localized monotone fronts always move with
the asymptotic marginal stable velocityc∗, which can
be found analytically. In contrast, oscillatory fronts
move with constant velocityc† > c∗, which are called



to be nonlinear marginally stable and for the system in
question can be found numerically. If the initial distri-
bution is not sufficiently well-localized (flat) the front
velocity depends on the initial distribution and system
parameters.
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