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Abstract
The paper proposes a new adaptive method for identi-

fication of the axial moment of inertia for a two degrees
of freedom reaction wheel pendulum with viscous fric-
tion in suspension bearings. The pendulum contains
a rod, a controlled DC motor and a flywheel attached
to the rotor shaft. One end of the rod rotates in hinge
bearing. The controlled DC motor with a flywheel is
attached to the other end of the rod. The angles of rota-
tion of the rod and of the controlled flywheel are mea-
sured by encoders. The proposed adaptive method is
based on an energy algorithm with reversible symmet-
ric motions of the pendulum system. The symmetric
motions are used to eliminate the influence of dissipa-
tive factors on the results of identification. The results
of computer modelling and experimental results show
high accuracy of the proposed identification method.

Key words
Moment of inertia identification, reaction wheel pen-

dulum, consecutive compensator, adaptive control.

1 Introduction
The problem of precise identification of moments of

inertia (MOI) of solid systems operating under con-
ditions of unknown friction and environmental resis-
tance is an actual problem of mechanics and control
theory. Identification of inertial parameters of the var-
ious constructions or of their complicated components
is especially important in robotics. In some cases it
is possible to estimate inertia parameters theoretically
by using CAD programs, but in practice the thorough
model of the system is often unknown, or requires a
time-consuming process to obtain it.

The inertial parameters can be estimated experimen-
tally [Tikhonov and Tkhai, 2016, Ovchinnikov et al.,
2017, Andrievskiy and Boikov, 2017] using various
time and frequency domain methods [Almeida et al.,
2007, Ivanov and Melnikov, 2015]. In the time do-
main methods including the pendulum method or its
various modifications [Pandit et al., 1992], the inertial
properties of a weighted body are determined relative
to the period of its oscillations. Despite the fact that
these methods are widely used, they are not accurate
in the case of significant friction in the system or sig-
nificant resistance of the environment. Frequency do-
main methods (IRM and DPPIM) and modal methods
[Almeida et al., 2008] are based on measuring the mo-
tion of a solid body in bi-filar or multi-filar suspensions,
Stewart platforms, etc. [Malekjafarian et al., 2016,Bar-
reto and Muñoz, 2010, Hou et al., 2009]. These meth-
ods also have drawbacks. For example, multi-filar sus-
pensions create a significant measurement error due
to additional unwanted movements in different direc-
tions, require accurate calibration and additional time
for preparation of the test. In control theory, inertial
parameters are estimated using various identification
methods based on the analysis of the motion [Gobbi
et al., 2011, Garćıa-Alarćon et al., 2012].

In this article, we present a new adaptive method for
identifying inertial parameters of solids on special sym-
metrical program motions. The method uses an en-
ergy approach [Fradkov and Andrievsky, 2006,Fradkov
and Andrievsky, 2004] and is based on an energy algo-
rithm [Alyshev et al., 2015,Melnikov, 2012,Dudarenko
et al., 2014]. This algorithm uses a two-step reversible
symmetric motion, containing two motions with ap-
proximately equal energy dissipation. We use robust
adaptive control with the high-gain feedback principle
to provide the desired program motions. Using this
method, we do not need a friction evaluation to accu-
rately identify the MOI.
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The paper is organized as follows. In Section 2 we de-
scribe the construction of the pendulum. In Section 3
we obtain a general equation for calculating the MOI of
the rod. In Section 4 we present an algorithm for con-
trolling the program symmetrical motions of the pen-
dulum and give the results of mathematical modelling
and identification of MOI of the rod in MATLAB. Af-
ter that we compare the obtained results with the results
of existing methods. In Section 5 we present the results
obtained at our experimental device. In Section 6 we
conclude our paper with concluding remarks.

2 Problem Formulation
We will present and demonstrate our method on a sys-

tem with two degrees of freedom (DOF) called the
reaction-wheel pendulum [Block et al., 2007, Spong
et al., 2001].

Figure 1. Reaction Wheel Pendulum

The system consists of two kinematic groups of ele-
ments. The first group consists of a rod with the stator
of the motor and the housing of the motor gearbox with
the central MOIs that are denoted by Jrod, Js and Jgh.
The first group performs a rotation motion around the
fixed horizontal axis O in the plane OXY . The second
group consists of a rotor of the motor and a flywheel
(a homogeneous disk) with the central MOIs that are
denoted by Jr and J2. The second group performs a
plane motion. Note that we will use the second group
as a measuring device to identify the element of the first
group, so the parameters of the second group should be
known.
The device is shown in Fig. 1, where q1 is the abso-

lute angle of rotation of the rod; q2 is the relative angle
of rotation of the flywheel; q̇1 is the angular velocity
of the rod; q̇2 is the angular velocity of the flywheel.
We assume that the position l1 of the center of gravity
(COG) of the rod C1 and the position l2 of the COG of
the second element C2 and of the motor C

′

2 are known.
We denote the torque of viscous friction in the suspen-
sion bearing by Md

1 ; the electromagnetic torque of the
motor by M2; the gravity forces of the elements by G1,
G2 and of the motor G

′

2.

We will identify the MOI J1 = Jrod + Jgh + Js +

m1l
2
1 + (m

′

2 + m2)l
2
2 and dissipative parameter using

symmetric program motion and then we will proof the
MOI identification accuracy by adding the additional
body with known moment of inertia Je = Jbody +
mbodyl

2
2. The program motion consists of a slowed

part and a symmetrical inverse accelerated part. Both
parts are performed in the same angular interval q11 ≤
q1 ≤ q12 after the preliminary accelerated motion. We
use the high-resolution sensors to measure the angle of
rotation of the flywheel and the pendulum. The pro-
gram motion is performed under conditions of substan-
tial viscous friction in bearings.

3 Energy Algorithm in MOI Identification Prob-
lem

Here we introduce the MOI identification procedure
for a system with a measuring drive with a flywheel.
The work of inertial torques changes its sign when the
pendulum passes into reverse motion; the work of dis-
sipative torques is always negative. This leads to the
possibility of an analytical purification of MOI identi-
fication procedure from dissipative torques. Using the
principle of the energy theorem for two motions, we
get

(T12 +Π12)− (T11 +Π11) = A1 +B1 +D1 (1)
(T22 +Π22)− (T21 +Π21) = A2 +B2 +D2, (2)

here T11, T12, T21, T22 and Π11, Π12, Π21, Π22 are
the nodal values of the kinetic and potential energies of
the pendulum system; A1 and A2 are the work of the
motor torque in the considered angular interval on the
forward [q11, q12] and on the inverse [q13, q14] motions;
B1 and B2 are negative work of unknown torques of
viscous friction in the bearing O on two program mo-
tions; D1 and D2 are negative work of known torques
of viscous friction in the bearings of the measuring mo-
tor. Note that the potential energy of the system at
the same angular positions has the same values, i.e.
Π11 = Π22 ≡ Π1 and Π12 = Π21 ≡ Π2.
We assume that the work of dissipative torques in

bearings on symmetrical pendulum motions are ap-
proximately the same, i.e. B1 ≈ B2 < 0. Subtract-
ing (2) from (1), we obtain an equation that does not
contain dissipative torques:

T12 − T11 + T21 − T22 =

= 2 Π1 − 2 Π2 +A1 −A2 +D1 −D2. (3)

The equation (3) contains the nodal values of the ki-
netic and potential energies and consumption of elec-
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trical energy at the angular interval [q12, q11]:

2T11 = a11q̇
2
11 + 2a12q̇11q̇21 + a22q̇

2
21,

2T12 = a11q̇
2
12 + 2a12q̇12q̇22 + a22q̇

2
22,

2T21 = a11q̇
2
13 + 2a12q̇13q̇23 + a22q̇

2
23,

2T22 = a11q̇
2
14 + 2a12q̇14q̇24 + a22q̇

2
24,

a11 = J1 + J2 + Jr; a12 = Jri
−1 + J2

a22 = Jri
−2 + J2,

Π1 = b(1− cos q11) (4)
Π2 = b(1− cos q12), (5)

where m1, m
′

2 and m2 are the masses of the rod, the
motor and second elements, g is the gravitational accel-
eration; q̇21, q̇22 and q̇23, q̇24 are the angular velocities
of the flywheel at the beginning and at the end of two
symmetrical movements.

Substituting (4) for (3) and collecting the terms, we
obtain the equation for MOI Ĵ1:

Ĵ1 = (2(A1−A2)+2(D1−D2)+4b(cos q12−cos q11)−
−a22(q̇

2
22+q̇223−q̇221−q̇224)−2a12(q̇12q̇22+q̇13q̇23−q̇11q̇21−

− q̇14q̇24))/(q̇
2
12+ q̇213− q̇211− q̇214)−J2−Jr−m2l

2
2,

(6)

where b = g
(
m1l1 +

(
m

′

2 +m2

)
l2

)
; the works

A1, A2, D1, D2 on the time interval t ∈ [t10, t11]
of the direct motion and on the time inter-
val t ∈ [t20, t21] of the inverse motion are

defined by Aj =
tj1∫
tj0

M(t)i−1q̇2(t)dt, Dj =

−
tj1∫
tj0

Md
2 (t)i

−1q̇2(t)dt, j = 1, 2 or, we can

calculate the work A1, A2, D1, D2 from the very
beginning of the symmetric motion using Aj =

i−1

(
tj1∫
0

M(t)q̇2(t)dt−
tj0∫
0

M(t)q̇2(t)dt

)
.

Suppose that the friction torque Md
1 acting in the bear-

ing O has an unknown significant viscous friction coef-
ficients f1: Md

1 = f1i
−1q̇1. So, the works B1 and B2

are defined by: Bi = −
ti1∫
ti0

Md
1 (t)q̇1(t)dt, i = 1, 2.

Summarize (2) and (1), supposing that the inertial pa-
rameter is eliminated from the calculation, we obtain

an equation for the coefficients f1:

f̂1 = (2(A1 +A2 +D1 +D2)− 2a12(q̇12q̇22−
− q̇11q̇21 + q̇14q̇24 − q̇13q̇23)− a22(q̇

2
22 − q̇221+

+q̇224−q̇223))/

2i−1

 t11∫
t10

q̇21(t)dt+

t21∫
t20

q̇21(t)dt

 .

(7)

4 Example
The example demonstrates a proposed adaptive en-

ergy method for MOI identification.

4.1 Mathematical Model of the Pendulum
Using the Lagrange method, we obtain a mathemati-

cal model of a pendulum with two DOFs in the form
of a system of two differential equations with constant
parameters

a11q̈1 + a12q̈2 = −b sin q1 −Md
1

ia12q̈1 + ia22q̈2 = M −Md
2 .

Let the torque of the motor M2 be an approximately
linear function of the angular velocity of the rotor:
M2 = c1u − c2q̇2; M is the torque with deadzone of
the motor; i−1 is the transmission gear ratio; Md

2 =
f2i

−1q̇2 + f3 sign(i−1q̇2) is the motor friction. The
DC motor has the deadzone

M =

0, if d2 ≤ ηM2 ≤ d1
ηM2 − d1, if ηM2 > d1,
ηM2 + d2, if ηM2 < d2,

(8)

where η is the electrical efficiency of the motor.
We assume that the coefficients f2 and f3 of viscous

and Coulomb friction in the motor bearings with the
gearbox; deadzone parameters d1, d2 and the coeffi-
cients η, c1 and c2 are known from the preliminary
identification of the motor mathematic model.
We use the control signal u1 = (c1η)

−1f3sign(i−1q̇2)
to neutralize Coulomb friction in the bearing O and
than we get

q̈1 = (a22a11 − a212)
−1(−a22(b sin q1 −Md

1 )−
−a12i

−1(ηM2 − f2i
−1q̇2)),

q̈2 = (a22a11 − a212)
−1(a11i

−1(ηM2 − f2i
−1q̇2)+

+a12(b sin q1 +Md
1 )),

(9)
or in the Cauchy form:

ẋ1 = x2,
ẋ2 = −α3x2 − α2 sinx1 + α7x4 − α4u2,
ẋ3 = x4,
ẋ4 = α8x2 + α6 sinx1 − α9x4 + α5u2,

(10)
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where

x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2,
u0 = u1 + u2 + u3, α1 = (a22a11 − a212)

−1,
α2 = α1a22b, α3 = α1a22f1i

−1,
α4 = α1a12i

−1ηc1,
α5 = α4a11a

−1
12 ,

α6 = α2a12a
−1
22 ,

α7 = α1a12i
−1(c2η + f2i

−1),
α8 = α3a12a

−1
22 , α9 = α7a11a

−1
12 ,

(11)

here α1 . . . α9 are positive coefficients; x1 is the output
of the system; u3 is the DC-motor deadzone compen-
sation signal defined as:

u3 =

d1(c1η)
−1, if u1 + u2 > 0

0, if u1 + u2 = 0
d2(c1η)

−1, if u1 + u2 < 0
(12)

The initial deviation from the equilibrium position of
the pendulum can be set manually, or by using an ad-
ditional device or by using preliminary controlled mo-
tions [Andrievskiy, 2004, Andrievskiy, 2011, Bobtsov
et al., 2011, Fradkov et al., 2012, Tikhonov, 2000]. The
compact form of the equations of motion with respect
to dimensionless time is presented in [Beznos et al.,
2003a, Beznos et al., 2003b].
Here we develop a control for nonlinear system (10).

The control should ensure the symmetry of the program
motion y(t) = x1(t) of the pendulum for the limited
reference signal ym(t) as limt→∞ |y(t)− ym(t)| <
δ. We use the algorithm proposed in [Bobtsov et al.,
2011, Bobtsov and Pyrkin, 2008], where only the out-
put variable is measured. The non-linear system (10)
in the input-output representation has the form

y =
r(p)

a(p)
u2 +

h(p)

a(p)
φ(y), (13)

where r(p) = rmpm + rm−1p
m−1 + ... + r1p + r0,

rm > 0, a(p) = pn + an−1p
n−1 + ... + a1p + a0,

h(p) = pn+hn−1p
n−1+ ...+h1p+h0 are polynomi-

als with unknown parameters; m ≤ n− 1; ρ = n−m
is the maximum relative degree of transfer function
r(p)
a(p) . The polynomial r(p) in (13) is Hurwitz and φ(y)

is the unknown function that satisfies the assumptions
φ(0) = 0, −C0 ≤ φ(y)

y ≤ C for any y ̸= 0. The
equation for the tracking error e(t) has the form

e(t) = ym(t)− x1(t). (14)

We define the control u(t) in the form

u(t) = −(ν + κ)α(p)ξ1(t), ν > ν0 (15)


ξ̇1(t) = σξ2(t),

ξ̇2(t) = σξ3(t),
...

ξ̇ρ−1(t) = σ(k1e(t)−
−k1ξ1(t)− . . .− kρ−1ξρ−1(t)),

(16)

where the polynomial α(p) of order ρ− 1 is chosen so
that the polynomial a(p) + νr(p)α(p) is Hurwitz. The
positive parameter κ is determined from the conditions
for neutralizing the nonlinearity φ(y). The coefficients
σ > ν + κ, ki are determined from the asymptotic sta-
bility conditions for the system (16).
Now we define the coefficients ν, κ, σ of the con-

troller. The parameter k̃ = ν + κ can be tuned as fol-
lows:

k̃(t) =

∫ t

t0

λ(τ)dτ, (17)

where the function λ(t) is defined as follows

λ(t) =

{
λ0, |e(t)Wf (p)| > δ0
0, |e(t)Wf (p)| ≤ δ0

; λ0 > 0. (18)

The parameter σ is calculated using the following al-
gorithm

σ(t) = σ0k̃
2(t), σ0 > 0. (19)

Since the system (13), where h(p) = −α2p+α6α7−
α2α9, a(p) = p3 + (α9 + α3)p

2 + (α3α9 − α7α8)p,
r(p) = −α4p − α4α9 + α5α7, φ(y) = sin y has the
maximum relative degree ρ = 2, then the controller
(15) - (16) with α = p+ 1, k1 = 1 has the form

u(t) = − (p+ 1) k̃(t)ξ1(t) =

= −(
˙̃
k(t)ξ1(t) + k̃(t)ξ̇1(t) + k̃(t)ξ1(t))

ξ̇1(t) = σ (−ξ1(t) + e(t)) (20)

4.2 Alternative Method
Another approach is to estimate MOI using the in-

verse controller (adaptive backstop control) proposed
in [Krstic et al., 1995, Benaskeur and Desbiens, 1998,
Chiu et al., 2011,Ebrahim and Murphy, 2005] with sta-
bility estimation by Lyapunov function [Alyshev et al.,
2018,Melnikov, 2010]. Let e1 be the tracking error (14)
and e2 be the second error defined as

e2 = x̂2 − β1 − ẏm,
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where t is omitted for brevity. Then the derivatives of
the tracking errors e1 and e2 have the form

ė1 = ˆ̇x1 − ẏm, ė2 = ˆ̇x2 + n1ė1 − ÿm,

where β1 = −n1e1 is the virtual control signal.
We choose the first Lyapunov function as follows

V1 =
1

2
e21.

Taking the derivative of the Lyapunov function V1, we
obtain

V̇1 = e1ė1 = e1

(
ˆ̇x1 − ẏm

)
=

= e1 (x̂2 − ẏm) = e1 (e2 + β1) = e1e2 − n1e
2
1.

If e2 = 0, then we get V̇1 = −n1e
2
1 ≤ 0 where n1 > 0

and ˆ̇x1 = x̂2.
We choose a new candidate for the Lyapunov function
V2 as

V2 = V1 +
1

2
e22 +

1

2γ1
e2α3

+
1

2γ2
e2α2

Taking the derivative of the function, we get

V̇2 = V̇1 + e2ė2 +
1
γ1
eα3 ėα3 +

1
γ2
eα2 ėα2 =

= −n1e
2
1 + e2(e1 +ˆ̇x2 + n1ė1 − ÿm)− 1

γ1
eα3

˙̂α3−
− 1

γ2
eα2

˙̂α2 = −n1e
2
1 + e2(e1 − α3x̂2 − α2 sinx1+

+α7x4 − α4u2 + n1ė1 − ÿm) + eα3

(
−̂̇α3

γ1
− e2x̂2

)
+

+eα2

(
−̂̇α2

γ2
− e2 sinx1

)
,

where eα3 = α3−α̂3, eα2 = α2−α̂2 are the parameter
estimations errors; ėα3 = − ˙̂α3, ėα2 = − ˙̂α2 are the
derivatives of parameter estimation errors.
We apply the control signal u in the following form

u = α̂−1
4 (e1 − α̂3x̂2 − α̂2 sinx1 + α̂7x4 + n1ė1 − ÿm+

+n2e2) = α̂−1
4 (x1 − ym − α̂3x̂2 − α̂2 sinx1+

+α̂7x4 + n1 (x̂2 − ẏm)− ÿm + n2e2)
(21)

where the adaptation laws have the form ˆ̇α3 =
−γ1e2x̂2, ˆ̇α2 = −γ2e2 sinx1 with parameters α̂4 =
α̂2 (a22bi)

−1
a12ηc1, α̂7 = α̂4c1

−1(c2 + f2(ηi)
−1),

n2 > 0, γ1 > 0, γ2 > 0.

Substituting (21) for V̇2 we get a negative definite
function V̇2 = −n1e

2
1 − n2e

2
2, so in the e1 = 0 and

e2 = 0 system is globally asymptotically stable.

We can obtain the estimation Ĵ1 and then f̂1 from the
following equations:

Ĵ1 =
b

α̂2
+

a212
a22

− J2 − Jr, (22)

f̂1 =
α̂3(a22(Ĵ1 + J2 + Jr)− a212)

a22i−1
.

Since the velocity of the flywheel changes rapidly, we
will use the following [Xian et al., 2004] adaptive ve-
locity observers for the pendulum and for the flywheel:

{
x̂2 (t) = ˆ̇x1 (t) = px2 (t) + σx2 x̃1 (t)
ṗx2 (t) = εx2sign (x̂1 (t)) + ρx2 x̃1 (t)

x̃1 (t) = x1(t)− x̂1(t)

{
x̂4 (t) = ˆ̇x3 (t) = px4 (t) + σx4 x̃3 (t)
ṗx4 (t) = εx4sign (x̂3 (t)) + ρx4 x̃3 (t)

x̃3 (t) = x3(t)− x̂3(t) (23)

where p(t)x2,x4 is an auxiliary variable;
σx2,x4 , εx2,x4 , ρx2,x4 are constants.
This systems can be used to calculate the angular ve-

locities q̇1 and q̇2 in (6) instead of directly measuring it
by the velocity sensor. For the observer delay compen-
sation the special filters [?] can be used.

5 Experimental and Simulation Results with
Analysis

In this section we check the algorithms of parameters
identification problem.
An experimental device (stand) is shown in Fig.1. We

use a 4.5 W Maxon DC motor; two 14-bit magnetic
angular position encoders AS5048A (SPI); an analog
amplifier; and a ICP DAS PCI-1202LU data acquisi-
tion board. The DC motor is connected to the computer
via an isolation converter.
Some parameters of the measuring motor (10) were

obtained by Nonlinear Least Squares method sepa-
rately on the set of free pendulum oscillations and mul-
tiharmonic testing signals for the motor: Jr = 0.21 ·
10−5kg ·m2, J2 = 11.34 · 10−5kg ·m2, c1 = 52.04 ·
10−4N ·m ·V −1, c2 = 3.697 ·10−6N ·m ·rad/s ·V −2,
f2 = 3.687·10−5N ·m·s, f3 = 302.02·10−5N ·m, η =
0.9, i−1 = 4.4, d1 = 5.485·10−4, d2 = −2.996·10−4.
Due to the small parameter f1 next we experimentally

check the accuracy only of the MOI identification.
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To calibrate the device, we use an additional test body
with a known moment of inertia Je = 96.1·10−5kg·m2

and mass mbody = 68.0 · 10−3kg, l2 = 117.0 · 10−3m.
This test body can balance the pendulum (b = 0) if it is
connected to the rod at the opposite distance from point
O away from the motor.
In the first case of Je = 0 which leads to b =
mbodygl2 = 78 · 10−3kg · m3 · s−2, using the NLS,
the estimated parameter Ĵ1 = 272.6 · 10−5kg ·m2 and
using the proposed method Ĵ1 = 302.2 · 10−5kg ·m2.
Here we use reference trajectory ym1 = 0.8 sin(8.5t).
Next we add the test body at the point C2, so the

parameter b = 2mbodygl2 can be easily recalculated,
a′11 = J1 + J2 + Jr + Je. Parameter obtained using
NLS â′11 = 381.0 ·10−5kg ·m2 and using the proposed
method â′11 = 405.1 · 10−5kg · m2. For this case we
use reference trajectory ym2 = 0.8 sin(6t).
So, we get the estimation of parameter Ĵe = â′11 −
Ĵ1−J2−Jr using the NLS Ĵe = 118.4kg ·m2 and by
the proposed method Ĵe = 102.9kg ·m2. One can see
that the experimental identification result is close to the
known value with the errors 12% and 7%, respectively.
This results are proven with the balanced pendulum and
slow oscillations with the reference trajectory ym3 =
0.8 sin(2t).
The position tracking errors of the system with the

control algorithm (20), system state vector and pa-
rameter k̃ are shown in Fig. 2-6. Suppose that the
control signal is bounded |u0| ≤ 10V , parameters
δ0 = 0.08, σ0 = 0.1, λ0 = 2, k̃(0) = 0. For the
postprocessing the measured angles in the proposed
method passed through a observer in the direct and
reverse time for the delay compensation; the control
signal passed through a filter with transfer function
Wf (p) = (0.0125p + 1)−1 which is also used in (18)
for the smoothing error e in the adaptation.

Figure 2. Tracking errors e with (dashed) and without (solid) body
(no filtering)

In the proposed method we use series of MOI calcula-
tions on a symmetric angular intervals at the time inter-
val from 15 to 22 seconds, where the tuning parameter
is no longer changing.
Lets compare the proposed and alternative methods

Figure 3. Pendulum angular velocity q̇1 with (dashed) and without
(solid) body

Figure 4. Wheel angular velocity q̇2 with (dashed) and without
(solid) body

Figure 5. Control signal u0 with (dashed) and without (solid) body

Figure 6. Tuning parameter k̃ complete with filter Wf (p)

for the MOI ideal identification simulation using the es-
timated values and friction parameter f1 = 26·10−5N ·
m · s.
The results of the simulation of the control system
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(20) with the parameters δ0 = 0.005, σ0 = 0.01, λ0 =
150, k̃(0) = 0 are shown in the Fig. 7 where the an-
gle of the controlled pendulum q1 is shown in green,
the pendulum reference trajectory is shown in blue, a
tracking error of e of the control system is shown in red
and 0.005k̃ in brown. Using the calculation formula
for the time moments t10 = 9.023s, t11 = 9.413s,
t20 = 9.433s, t21 = 9.823s we can get the MOI value
Ĵ1 with an average identification error 1,4%.

Figure 7. Pendulum angle q1 of the control system (solid), program
trajectory (dashed), tracking error (1) e and tunable parameter (2).

For the comparison, we simulate a controller contain-
ing an observer with tunable parameters (21), (23).
The numeric parameter values of the control system
are: γ2 = 100, γ1 = n1 = n2 = 10 and of the
observers σx2 = σx4 = 10000, ρx2 = ρx4 = 1,
εx2 = εx4 = 1. The initial values of the tunable pa-
rameters are α̂2(0) = 1, α̂3(0) = 1. The tunable pa-
rameters are limited to positive values [10−6 ∞]. The
simulation results are shown in Fig. 8. The estimate

Figure 8. Identification error J1 − Ĵ1

of the parameter Ĵ1 converges to the 5% identification
error in t = 8s. The advantage of this method is that
the identification occurs full-online. But controller and
observers parameters can be difficult to configure and,

due to the possible noise, parameters can be identified
incorrectly.
Analysing the experimental and simulation results we

conclude that the proposed method with consecutive
compensator has several advantages: it does not re-
quire measurement of acceleration, cumbersome calcu-
lations and linearization; only one two-step symmetric
interval is needed to identify the inertia and friction pa-
rameters; the dissipative function of any order can be
separated from the MOIs; the identification accuracy
can be set and estimated by analyzing the tracking er-
ror value; the program trajectory can have any conve-
nient symmetric shape with unknown derrivatives; pro-
posed method has a fast-time convergence by selecting
the right initial values of tuning parameters, can be eas-
ily configured with only two controller parameters, has
a stable and small amplitude of the control signal, has
high accuracy and can provides greater identification
performance than the known method. The method can
be also used as a discrete-online identification, where
the proposed formula is used for each oscillation.
In the future, we plan to develop multidirectional

measuring devices and optimize their control struc-
ture [Birk and Dudarenko, 2016, Birk and Dudarenko,
2012].

6 Conclusion
This paper presents a new adaptive method for identi-

fication of the axial moment of inertia. The developed
method is applied to a nonlinear mathematical model
of an pendulum system with two degrees of freedom.
The method allows to exclude the negative influence
of dissipative factors on the accuracy of identification.
The proposed method also opens up the possibility of
using a convenient and easy-to-install measuring iner-
tial drive for the rapid identification of a wide range of
objects. Comparative computer modeling shows that
the proposed identification method has higher accuracy
and provides greater identification performance. The
experimental results are given for illustration.
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