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Abstract
Recent work has shown that torus formation in

piecewise-smooth maps can take place through a spe-
cial type of border-collision bifurcation in which a
pair of complex conjugate multipliers for a stable cy-
cle abruptly jump out of the unit circle. Transitions
from an ergodic to a resonant torus take place via
border-collision fold bifurcations. The purpose of the
present paper is to examine the transition to chaos
through torus destruction in such maps. Consider-
ing a piecewise-linear normal-form map we show that
this transition, by virtue of the interplay of border-
collision bifurcations with period-doubling and homo-
clinic bifurcations, can involve mechanisms that differ
qualitatively from those described by Afraimovich and
Shilnikov.
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1 Introduction
Many problems in engineering and applied science

lead us to consider piecewise-smooth maps. Examples
of such systems include relay and pulse-width mod-
ulated control systems, mechanical systems with dry
friction or impacts, and managerial or economic sys-
tems with well-defined intervention thresholds.
As a parameter is varied, the fixed point for the

Poincaré map of such a system may move in phase
space and collide with the boundary between two
smooth regions. When this happens, the Jacobian ma-
trix can change abruptly, leading to a special class

of nonlinear dynamic phenomena known as border-
collision bifurcations (Feigin, 1994; Nusse and Yorke,
1992; di Bernardo et al., 1999).
A simple type of border-collision bifurcation con-

sists in the direct transition from one periodic or-
bit into another with the same period. However,
more complicated phenomena are also possible, includ-
ing period-multiplying bifurcations, multiple-choice
bifurcations and direct transition from periodicity to
chaos (Banerjee and Grebogi, 1999; Zhusubaliyev and
Mosekilde, 2003). Border-collision related bifurca-
tions also include corner-collision, sliding and grazing
bifurcations (di Bernardo et al., 2001).
Piecewise-smooth systems can also display quasiperi-

odic behavior. In a series of recent publications
(Zhusubaliyev et al., 2006; Zhusubaliyev and Mosek-
ilde, 2006b; Zhusubaliyev and Mosekilde, 2007a;
Zhusubaliyev and Mosekilde, 2007b) we have shown
that border-collision bifurcations can lead to the birth
of an invariant torus associated with quasiperiodic or
phase-locked periodic dynamics. This transition re-
sembles the well-known Neimark-Sacker bifurcation in
several respects. However, rather than through a con-
tinuous crossing of a pair of complex-conjugate multi-
pliers of the periodic orbit through the unit circle, the
border-collision bifurcation involves a jump of the mul-
tipliers from the inside to the outside of this circle.
We have also demonstrated the existence of a special
type of border-collision bifurcation in which a stable
periodic orbit arises simultaneously with a quasiperi-
odic or phase-locked invariant torus (Zhusubaliyev et
al., 2006).
Along with the period-doubling route and various

types of intermittency transitions, the formation and
subsequent destruction of a two-dimensional torus is



one of the classic routes to chaos in dissipative sys-
tems. Before breakdown, the resonance torus typically
loses its smoothness in discrete points through folding
(or winding) of the involved manifolds, and this loss
of smoothness then spreads to the entire torus surface
through local (e.g., saddle-node) or global (i.e., homo-
clinic or heteroclinic) bifurcations.
The basic theorem for the destruction of a two-

dimensional torus in smooth dynamical systems was
proved by Afraimovich and Shilnikov (Afraimovich
and Shilnikov, 1991), and three possible routes for the
appearance of chaotic dynamics were described. The
generic character of these processes has since been
confirmed numerically as well as experimentally for
wide classes of both continuous and discrete time sys-
tems (Aronson et al., 1982; Kuznetsov, 2004).
The purpose of the present paper is to investigate

some of the mechanisms that are involved in the tran-
sitions from phase-locked periodic dynamics to chaos
in non-smooth maps. With this purpose we follow
the bifurcations that take place as the point of oper-
ation for a piecewise-linear normal-form map leaves
the 1:4 resonance tongue along three different routes.
We show that the interplay between period-doubling,
border-collision and homoclinic bifurcations lead to
transitions that are qualitatively different from those
of Afraimovich and Shilnikov. In particular, we con-
sider a route in which a homoclinic bifurcation first
destroys the resonance torus while leaving the original
stable node cycle. This node subsequently undergoes
a period-doubling bifurcation combined with a simul-
taneous border-collision bifurcation for the appearing
subharmonic, and chaos arises. Other routes involve re-
gions of coexistence of periodic and chaotic attractors
or of different chaotic attractors. The paper discusses
the specific features of these routes and outlines some
of the characteristic differences between the routes fol-
lowed in smooth and in non-smooth maps.

2 Piecewise-linear normal form map
It is well-known that dynamical phenomena related

to border-collision bifurcations can be examined by
means of a piecewise linear approximation to the
Poincaré map in the neighborhood of the border-
crossing fixed point, expressed in the convenient nor-
mal form (Feigin, 1994; ?; Banerjee and Grebogi,
1999):

F :
(

x
y

)
7→

{
F1(x, y), x ≤ 0;
F2(x, y), x ≥ 0,

(1)

where

F1(x, y) =
(

τLx + y + µ
−δLx

)
;

F2(x, y) =
(

τRx + y + µ
−δRx

)
, (x, y) ∈ R2.

In this representation, the phase plane is divided into
two regions, L =

{
(x, y) : x ≤ 0, y ∈ R}

and R ={
(x, y) : x > 0, y ∈ R}

. τL and δL denote the trace
and the determinant respectively of the Jacobian ma-
trix JL in the half-plane L, and τR and δR are the trace
and determinant of the Jacobian matrix JR in the region
R.
The stability of the fixed point for the map (1) is de-

termined by the eigenvalues of the corresponding Ja-
cobian matrix λ1,2 = 1

2

(
τ ±√τ2 − 4δ

)
. These fixed

points at the two sides are given by

(
µ

χL(1)
, − µδL

χL(1)

)
and

(
µ

χR(1)
− µδR

χR(1)

)
,

with χ(1) representing the value of the characteristic
polynomial χ(λ) = λ2 − τλ + δ for λ = 1 in the
considered half plane.
As the parameter µ of the map (1) is varied from neg-

ative to positive values, the fixed point of (1) moves
from L to R, and a border-collision occurs at µ = 0.
Let us choose the parameters such that δL < 1 and
δR > 1. The conditions

{
χL(1)χR(1) > 0;
−1− δL < τL < 1 + δL and − 2

√
δR < τR < 2

√
δR

(2)
then ensure that the fixed point is attracting for µ < 0
and a spiral repeller for µ > 0.
In the present analysis we have assumed the follow-

ing values for the determinants: δL = 0.5, δR = 1.6.
For µ < 0 the map (1) then has a single nontrivial sta-
ble fixed point with a negative x-coordinate. When µ
changes sign, the x-coordinate of the fixed point also
changes sign, and the fixed point abruptly loses stabil-
ity as a pair of complex-conjugate eigenvalues of the
Jacobian matrix jump from the inside to the outside of
the unit circle, i.e. the stable focus transforms abruptly
into an unstable focus.
If the parameters τL and τR of the map (1) are var-

ied within the range delineated by (2), one can ob-
serve a large variety of dynamical phenomena asso-
ciated with the interplay between homoclinic bifurca-
tions and different forms of border-collision bifurca-
tions (Zhusubaliyev et al., 2006). Figure 1 shows the
chart of dynamical modes (two-parameter bifurcation
diagram) in the parameter plane (τL, τR) for positive
values of µ. Inspection of this chart reveals the pres-
ence of a dense set of periodic tongues. The main res-
onance tongues are marked with the corresponding ro-
tation numbers.
Depending on the parameter values, we observe a va-

riety of different scenarios:
(i) If the values of the parameters τL and τR are chosen

within a tongue of periodicity, then an attracting closed
invariant curve softly arises from the fixed point as the
parameter µ crosses the bifurcation point at µ = 0.



This invariant curve is formed by the unstable mani-
folds of a saddle cycle and the points of the correspond-
ing saddle and stable cycles.
(ii) If we choose the parameters τL and τR in a region

of quasiperiodicity, the stable fixed point for µ < 0
turns into an unstable focus point on the R side, and
quasiperiodic behavior arises.
(iii) If τL or τR are varied within the region (2) for

positive values of µ, more complicated bifurcation phe-
nomena are possible in the transition from phase locked
dynamics to quasiperiodicity and vice versa. In par-
ticular, these phenomena include the border-collision
fold bifurcation that is connected with the transitions
from periodic to quasiperiodic dynamics and a mod-
ified variant of the multiple-attractor bifurcation in
which a quasiperiodic attractor (or a mode-locked pe-
riodic orbit) arises together with one (or more) stable
cycles.

3 Transitions from phase-locked dynamics to
chaos

In each resonance tongue with the rotation num-
ber r : q the map displays an attracting closed invari-
ant curve which typically takes the form of a saddle-
node connection. The unstable manifold of the period-
q saddle connects to the period-q node thus forming
a closed attracting curve. For other parameter values,
the closed invariant curve may be associated with a
pair of saddle and focus cycles of similar periodicity
(Kuznetsov, 2004).
In a couple of recent papers (Zhusubaliyev and

Mosekilde, 2006a; Zhusubaliyev et al., 2006) we have
demonstrated that under variation of the parameters,
this closed invariant curve is destroyed through a ho-
moclinic bifurcation. However, the stable and saddle
cycles may continue to exist after the torus destruc-
tion. With further change of the parameters, these cy-
cles then merge and disappear in a border-collision fold
bifurcation. As a result, between the curves of homo-
clinic bifurcation and of border-collision fold bifurca-
tion there is a region of multistability, on the bound-
aries of which one can observe transitions with hys-
teresis. Using a DC/DC power converter as an exam-
ple of a piecewise-smooth system, we have shown ex-
perimentally that the hysteretic transitions observed for
the piecewise linear normal form map actually occur in
practical systems (Zhusubaliyev et al., 2006).
In the present paper we are interested in mechanisms

of torus breakdown that relate to the transition from
resonance behavior to chaotic dynamics. With this pur-
pose we shall follow the bifurcations that take place as
we leave the 1 : 4 resonance tongue of our normal-form
map along three different directions in parameter space.
It is well-known that the resonance tongues in

piecewise-smooth systems are bounded by border-
collision fold bifurcation curves (Zhusubaliyev
and Mosekilde, 2003; Zhusubaliyev and Mosek-
ilde, 2006a). As illustrated in Fig. 1, the 1 : 4

Figure 1. Chart of the dynamical modes near the 1 : 4 resonance
tongue. 1 and 2 are homoclinic bifurcation curves, NC

+ denotes the
border-collision fold bifurcation curves and N− is a smooth period-
doubling bifurcation curve. The present analysis is concerned with
the bifurcations that occur as we leave the 1 : 4 tongue along the
directions A, B and C , respectively.

resonance tongue consists of two different parts
separated by a so-called shrinking point in which
the border collision curves intersect. Here, the two
border-collision curves are indicated by NC

+ . 1 and
2 are homoclinic bifurcation curves, N− is a smooth
period-doubling bifurcation curve, and Ndiv delineates
the boundary of divergent behavior. The arrows
marked A, B and C represent the directions in which
we shall study the transitions in detail.
When the system leaves the resonance tongue through

the border-collision fold bifurcation boundary NC
+ of

the upper part, one observes a transition from reso-
nance to ergodic torus. This transition is always fol-
lowed by the breakdown of the torus through a homo-
clinic bifurcation. The transition from phase-locked
periodic motion to chaos, that is the focus of the present
study, only takes place on the boundaries of the lower
right part of the resonance tongue.

3.1 The period doubling route
Let us first analyze what happens when moving from

the inside to the outside of the resonance tongue
through the period-doubling bifurcation curve N−
along the direction A. Results of a bifurcation analysis
for the section

{
(τL, τR) : 0.95 ≤ τL ≤ 1.1; τR =

−1
}

are presented in Figs. 2.
Figure 2(a) shows the bifurcation diagram obtained

through direct simulation, and Fig. 2(b) displays the
corresponding diagram as obtained by following the
periodic orbits. At the point τL = τ∗L ≈ 1.0236
the largest multiplier of the period-4 cycle (in abso-
lute value) crosses the unit circle through −1 and the
period-4 cycle turns into an unstable node. Inspec-
tion of Fig. 2 shows that the loss of stability for the
period-4 cycle is accompanied by the abrupt appear-
ance of an 8-band chaotic attractor. It should be noted
that this attractor contains a family of unstable peri-
odic orbits with periods that are multiples of 4. These
cycles arise through the border-collision bifurcation at



(a)

(b)
Figure 2. Birth of 8-band chaotic attractor through a smooth pe-
riod doubling coinciding with a border collision bifurcation. (a) One-
parameter bifurcation diagram for the section along the direction A
in Fig. 1, τR = −1.0. (b) Birth of a family of unstable cycles with
periods that are multiples of 4. The cycles arise through the border-
collusion bifurcation at the point τ∗L ≈ 1.0236. This diagram con-
tains the unstable cycles with the periods 4, 8, 16, 24, 32, 40.

Figure 3. Non-smooth torus for τL = 0.9. This torus is the union
of the unstable manifold of the saddle period-4 cycle with the points
of the stable focus 4-cycle.

the point τL = τ∗L (see Fig. 2(b)).
The bifurcation diagrams in Fig. 2 also show that at

the point of period doubling, one of the points of the
unstable period-8 orbit hits the border x = 0. This re-
sults in the direct transition to a chaotic attractor with
eight bands. With further increase of the value of pa-
rameter τL, the 8 bands of the chaotic attractor merge
first into a 4-band chaotic attractor and subsequently

(a)

(b)
Figure 4. Torus destruction through homoclinic bifurcation before
the smooth period-doubling. (a) Phase portrait of the map near the
first homoclinic contact (the analogue of a homoclinic tangency in
smooth maps), τL = 0.99. (b) Homoclinic intersections of the
unstable and stable manifolds of the saddle period-4 cycle, τL =
1.018. The multipliers of the stable period-4 cycle are real and
negative.

into a single chaotic band. This transition is similar in
its appearance to the transition observed by Maistrenko
et al.(Maistrenko et al., 1995) for the skew tent map.
However, in our case the transition involves the de-
struction of a torus for the two-dimensional map.
Let us consider the characteristics of the bifurcational

behavior shown in Fig. 2 in more detail in order to
understand the mechanism of the transition between
mode-locking and chaos. Before the transition, the sys-
tem displays a closed invariant curve that is the union
of the unstable manifold of the saddle cycle of period-
4 and the points of the stable focus period-4 cycle
(Fig. 3).
As the trace τL increases, at the point τL ≈ 0.99

the first homoclinic bifurcation occurs (or homoclinic
contact by analogy with the homoclinic tangency in
smooth maps) (see Fig. 4(a)). With further increase
in the value of τL, the stable and unstable manifolds
of the period-4 saddle cycle intersect transversally to



(a)

(b)
Figure 5. Phase portrait of the map after a period-doubling bifurca-
tion. (a) 8-band chaotic attractor for τL = 1.035. On the phase
portrait one can see the points of the unstable cycles with the periods
4, 8, 12, 16, 24, 32, 40 (see also the bifurcation diagram in Fig. 2).
(b) single band chaotic attractor for τL = 1.0725.

form a homoclinic structure (see Fig. 4(b)). The inter-
section of the two manifolds implies the existence of a
Smale horseshoe and, therefore, of an infinite number
of high-periodic orbits (Kuznetsov, 2004). After the
homoclinic tangency, the attractor of the map is still
the period-4 node, but the torus no longer exists.
At τL ≈ 0.9744, the complex conjugate multipliers

merge on the negative real line, and the fixed point be-
comes a flip attractor. Following this, the two nega-
tive real eigenvalues move away from each other, and
at τL ≈ 1.0236 one of the eigenvalues reach the unit
circle on the negative real line. This marks a smooth
period-doubling bifurcation, and it is known that be-
yond this point the torus cannot exist.
Since the map is linear on each side of the border at

x = 0, the period-8 cycle produced in the period dou-
bling instantly moves away, and one of its points col-
lides with the border. This leads to the abrupt transition
to an 8-band chaotic attractor.
Figure 5 (a) shows the phase portrait after the period-

doubling bifurcation. The phase portrait contains the

points of the unstable cycles with the periods 4, 8, 12,
16, 24, 32, 40. As mentioned above, these cycles arise
through a border-collision bifurcation occurring at the
same parameter value as the period-doubling τL = τ∗L.
Figure 5 (b) illustrates the phase portrait of the map for
the single band chaotic attractor.
It is possible that the period doubling takes place af-

ter a second homoclinic intersection. When that hap-
pens, we observe a hard transition to chaos through
the period-doubling bifurcation. This transition is ob-
served when the system leaves the resonance tongue
along the direction C that crosses the line of the sec-
ond homoclinic tangency 2 and the curve of the period
doubling bifurcation N−.
First, the torus is destroyed through the homoclinic

bifurcation. With further increase of τL the second ho-
moclinic tangency occurs.
Between the point of the second homoclinic bifur-

cation and the point of a period doubling bifurcation,
the stable period-4 cycle coexists with the single-band
chaotic attractor. At the point of the period doubling
bifurcation we can observe the abrupt transition to an 8
band chaotic attractor through the period doubling bi-
furcation.

3.2 Hard transition to chaos through homoclinic
intersection

Now let us discuss the bifurcational behavior when we
leave the resonance tongue along the direction B (see
Fig. 1).
As the parameter τL decreases the stable node period-

4 cycle merges with the saddle period-4 cycle and dis-
appears in a border-collision fold bifurcation. The do-
main between the lines of homoclinic bifurcation 1
and of border-collision fold bifurcation NC

+ is a region
of multistability where the stable period-4 orbit coex-
ists with chaotic and high-periodic attractors (Fig. 1).
When crossing the boundaries of the upper part of
the region multistability the system displays hysteretic
transitions from the periodic to the chaotic attractor and
vice versa.
On the boundaries of the bottom part of this re-

gion, the dynamical behavior is more complicated,
as tongues of various periodicity intersect with the
1 : 4 tongue. Here one can observe a hard transition
from period-4 cycle to a chaotic or high-periodic at-
tractor and vice versa.
Between the lines 2 and NC

+ we find a region of bista-
bility where the stable period-4 cycle coexists with the
chaotic attractor. As a result, along the whole boundary
of this region we may observe hysteretic transitions.

4 Conclusions
Many systems of interest in physics, engineering and

other sciences display discontinuities that lead to a
dynamical description in terms of piecewise-smooth
maps. In such systems, quasiperiodic or phase-locked
resonant behavior on the surface of a torus can arise



through a special type of border-collision bifurcation
in which a pair of complex conjugated multipliers for a
stable periodic orbit jumps out of the unit circle. With
further parameter variation, the torus may be destroyed
through a number of different mechanisms, giving birth
to chaos.
Afraimovich and Shilnikov have proposed three pos-

sible mechanisms for the transition from torus to chaos
in smooth maps. In this paper we investigated three
specific routes of torus destruction leading from phase-
locked dynamics to chaos in piecewise-smooth maps.
Using the appropriate piecewise-linear normal-form
map as a tool, we showed that the routes to chaos in
non-smooth maps may display significant differences
from the mechanisms described by Afraimovich and
Shilnikov.
In one of the routes reported in this paper, a homo-

clinic intersection first destroys the torus. In the ab-
sence of the torus, the stable node undergoes a period
doubling, immediately followed by a border collision
that gives birth to the chaotic orbit. In another route, the
first homoclinic tangency is followed by a second ho-
moclinic tangency, which gives birth to a single-band
chaotic attractor. But the stable periodic orbit persists.
At a different parameter value, this periodic orbit un-
dergoes a period-doubling bifurcation, again immedi-
ately followed by a border collision. This creates a
different multi-band chaotic orbit. If the orbit before
period doubling was period-n, the chaotic attractor has
2n bands. The multi-band attractor is destroyed at a
border-collision fold bifurcation, where we see a hard
transition from one chaotic orbit to another.
In the third route, the first homoclinic tangency is fol-

lowed by a second homoclinic tangency, and a chaotic
attractor is born. This attractor coexists with the stable
periodic orbit for some parameter interval. At a spe-
cific parameter value, the stable node (or focus) col-
lides with the saddle on the border, and both are de-
stroyed through a border-collision fold bifurcation.
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