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Abstract
In this experimental study, the synchronized mo-

tion observed in pairs of nonlinear oscillators coupled
through a suspended rigid bar, is analyzed. In parti-
cular, the dynamics of two mass-spring-damper osci-
llators and the dynamics of two van der Pol oscillators
are considered. It is shown that in both cases, the os-
cillators may exhibit in-phase and anti-phase synchro-
nization. The experiments are executed in an experi-
mental setup, consisting of two mass-spring-damper-
oscillators coupled through a suspended rigid bar. A
relation between the obtained results and Huygens’ ex-
periment of pendulum clocks is emphasized.

Key words
Synchronization, Huygens’ coupling, nonlinear osci-

llators, dynamics.

1 Introduction
Synchronization of oscillating objects or bodies seems

to happen in a natural way, i.e. if the bodies are pro-
grammed in such a way that a weak interaction between
them will result in an adjustment of their rhythms.
Several examples can be found in literature [Strogatz,
2003; Pikovsky, Rosenblum, and Kurths, 2001].
Probably the earliest writing on inanimate synchro-

nization is due to the Dutch scientist Christiaan Huy-
gens (1629-1695), who discovered that two pendulum
clocks hanging from a common support (a wooden
bar supported by two chairs), after some transient be-
haviour, kept in pace relative to each other such that
the two pendulums always swing together (in opposite
motion) and never varied. Huygens called this “sympa-
thy of two clocks” [Pikovsky, Rosenblum, and Kurths,
2001; Huygens, 1660].
Two other classical examples related to the synchro-

nization phenomenon are due to John William Strutt
(Lord Rayleigh, 1842-1919) and Balthasar van der Pol

(1889-1959). Rayleigh discovered that two organ tubes
may produce a synchronized sound provided the outlets
are close to each other [Rayleigh, 1945], and van der
Pol studied the synchronization phenomenon of (har-
monic and nonharmonic) electric oscillations [van der
Pol, 1920].
Around 1948, the occurrence of spontaneous synchro-

nization was also addressed by Russian scientists, who
observed that two unbalanced rotors mounted on the
same vibrating support structure and driven by asyn-
chronous motors may synchronize under certain condi-
tions [Blekhman, 1988].
Nowadays, there exists a large number of studies ad-

dressing the phenomenon of synchronization in several
fields like biology, chemistry, physics, and engineer-
ing. Several couplings/controllers have been developed
in order to achieve synchronized motion in a pair (or
a network) of oscillators. Although Huygens’ experi-
ment has been revisited several times [Bennett et al.,
2002; Pantaleone, 2002; Oud, Nijmeijer, and Pogrom-
sky, 2006; Czolczynski et al., 2011], the use of Huy-
gens’ coupling to synchronize two arbitrary second or-
der nonlinear oscillators has not been studied exten-
sively.
This paper addresses the problem of synchronizing

pairs of (identical) nonlinear oscillators with Huygens’
coupling. The original Huygens system is slightly
modified in the sense that each pendulum clock is re-
placed by an arbitrary second order nonlinear oscilla-
tor. The coupling bar, i.e. Huygens’ coupling, will be
considered as the key element in the occurrence of syn-
chronization. In particular, it is shown that the mass of
the coupling bar determines the eventual synchronized
behaviour in the oscillators, namely in-phase or anti-
phase synchronization. Three examples are considered:
pairs of mass-spring-damper oscillators and a pair of
van der Pol oscillators. For the case of mass-spring-
damper oscillators, two different controllers are con-
sidered, namely a state dependent discontinuous con-
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troller and an energy-based controller. The purpose of
these controllers is to sustain the oscillations in the sys-
tem. It is shown that the synchronized motion in the os-
cillators is independent of the kind of controller used to
maintain the oscillations. Ultimately, it is experimen-
tally demonstrated that two nonlinear oscillators may
synchronize without the influence of an explicit control
action, provided that the oscillators are linked through
Huygens’ coupling.
An experimental platform consisting of a suspended

(controllable) rigid bar (in Huygens’ example the
wooden bar on two wooden chairs) and two (contro-
llable) mass-spring-damper oscillators (the pendulum
clocks in Huygens’ case) is used in the experimental
analysis. In fact, this setup has the potential that its dy-
namical behaviour can be adjusted. This is possible due
to the fact that the oscillators and the coupling bar can
be actuated independently, then by using feedback, it
is possible to enforce specific desirable oscillators’ dy-
namics and likewise it is possible to modify, if desired,
the behaviour of the coupling bar.
The outline of the paper is as follows. First, a ge-

neralized (and simplified) version of Huygens’ system,
corresponding to our experimental setup is described
in Section 2. Next, in Section 3, the in-phase and anti-
phase synchronization of mass-spring-damper oscilla-
tors with two different types of controllers is investi-
gated. In Section 4, the dynamics of the experimental
setup is modified in order to mimic two coupled van
der Pol oscillators. In-phase and anti-phase synchro-
nization is discussed. Finally, a discussion of obtained
results and conclusions are formulated in Sections 5.

2 Experimental setup and model description
In the original setup of pendulum clocks used by Huy-

gens in his discovery of synchronization, the coupling
between the clocks was a wooden bar supported by two
chairs. In its simplest form, the wooden bar at the
top of two chairs can be modeled by a single degree
of freedom (dof) suspended rigid bar. The pendulum
clocks can be replaced by two damped/driven pendula
[Pogromsky, Belykh, and Nijmeijer, 2003].
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β1

κ2

β2

U1 U2U3

κ3

β3
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Figure 1. Schematic representation of the setup.

A further simplification of the Huygens system is the
schematic model depicted in Figure 1. In this model,

the pendulum clocks are now replaced by two (actua-
ted) mass-spring-damper oscillators and the wooden
bar at the top of two chairs is again modeled by a sin-
gle dof suspended rigid bar. Note that in this model
rotational angles are replaced by translational displace-
ments. The control inputs U1, U2 of the two oscilla-
tors can be used to guarantee steady-state oscillations
and/or to modify the inherent dynamic properties of the
system, like mass, stiffness, and damping, in a desired
way.
The idealized -i.e. assuming that no friction is present-

equations of motion of the system of Figure 1 are

ẍ1 = −ω2
1(x1 − x3)− 2ζ1ω1(ẋ1 − ẋ3) +

1

m1
U1

ẍ2 = −ω2
2(x2 − x3)− 2ζ2ω2(ẋ2 − ẋ3) +

1

m2
U2 (1)

ẍ3 = −
2∑

i=1

µi (ẍ1 + ẍ2)− ω2
3x3 − 2ζ3w3ẋ3 +

1

m3
U3,

where the mass of each subsystem is given by mi

(i = 1, 2, 3), ωi =
√

κi

mi
[rad s−1], ζi = βi

2ωimi

[−] are respectively the angular eigenfrequency and di-
mensionless damping coefficient present in subsystem
i (i = 1, 2, 3), and the coupling strengths are denoted
by µi =

mi

m3
(i = 1, 2). These parameters are given in

Table 2. The electric actuator force for subsystem i is
denoted as Ui. The stiffness and damping characteris-
tics present in the system are assumed to be linear with
constants coefficients κi, βi ∈ R+. Finally, xi ∈ R
(i = 1, 2, 3), are the displacements of the two oscilla-
tors and the coupling bar respectively.

Figure 2. Photo of the experimental setup at TU/e.

As a matter of fact, the diagram of Figure 1 sche-
matically describes the experimental setup of Figure 2,
which has been constructed in order to study synchro-
nization of coupled oscillators in general. By means of
feedback control, it is possible to adjust the dynamical
properties of the setup. Obviously, this opens the pos-
sibility of analyzing synchronous behaviour in a wide
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variety of dynamical systems. This experimental plat-
form can be used to validate (robustness of) theoreti-
cal findings. Moreover, the obtained experimental re-
sults may indicate new and interesting directions for re-
search. A detailed description of the setup is presented
in a previous paper [Pena-Ramirez, Fey, and Nijmeijer,
2011].

3 Phase synchronization of pairs of mass-spring-
damper oscillators with two different types of
controllers

In this section, the limit behaviour of mass-spring-
damper oscillators with two different types of con-
trollers and with Huygens’ coupling is analyzed. Due
to the damping in the system, it is clear that a con-
trol signal should be designed such that the oscillations
do not damp out. The need of having a control input
can be linked to Huygens’ case, where the pendulum
clocks are driven by an escapement mechanism in or-
der to keep the clocks running. First, the oscillations
in each oscillator are sustained by a state dependent
discontinuous controller and secondly, an energy-based
controller is used. As will be shown, the controllers are
such that the oscillators in fact become nonlinear and
self-sustained. It is demonstrated that the kind of con-
troller used to sustain the oscillations in the oscillators
seems to be irrelevant in the synchronized motion of
the system. It will be emphasized that the spontaneous
synchronized motion in the oscillators is indeed due to
the interaction of the oscillators through the suspended
rigid bar.

3.1 State dependent discontinuous controller
The original escapement mechanism of a pendulum

clock “kicks” the pendulum each time a certain thres-
hold angle is achieved. In other words, energy is
“pumped” into the system. However, the modeling of
this escapement mechanism is far from trivial and some
simplifications should be made. In analogy to this es-
capement, the following state dependent controllers are
implemented in system (1) such that the oscillations do
not damp out

Ui = −miαiẋisign(|xi| − xref ), i = 1, 2, (2)
U3 = 0, (3)

where αi ∈ R+ defines the amplitude of the force Ui,
the constant xref ∈ R+ represents a threshold dis-
placement value and

sign(x) =

 1 if x > 0,
0 if x = 0,

−1 if x < 0.
(4)

U3 is taken to be zero because we want the bar to osci-
llate freely. Moreover, it is clear that the controllers (2)-

(3) convert system (1) into a discontinuous piecewise-
linear system. Additionally, (2) assures that in steady-
state, system (1) will exhibit stable oscillations.

3.1.1 Analysis of the anti-phase synchronization
Consider the simplified case m = m1 = m2, ω =
ω1 = ω2, ζ = ζ1 = ζ2, and α = α1 = α2. The
analysis continues under the assumption that |x1(t)| <
xref and |x2(t)| < xref , ∀t ∈ [0, t1], for some t1 > 0
[Dilão, 2009]. This implies that (1) is transformed to
the linear system

ẍ1 = −ω2(x1 − x3)− 2ζω(ẋ1 − ẋ3) + αẋ1

ẍ2 = −ω2(x2 − x3)− 2ζω(ẋ2 − ẋ3) + αẋ2 (5)

ẍ3 = − m

m3
(ẍ1 + ẍ2)− ω2

3x3 − 2ζ3ω3ẋ3.

The situation where α > 2ζω will be conside-
red, so that the trivial solution x1 = x2 =
x3 = 0 of system (5) is unstable. If sys-
tem (5) synchronizes in anti-phase, then all trajecto-
ries converge to the anti-phase manifold Manti :=
{(x1, ẋ1) = (−x2,−ẋ2), x3 = ẋ3 = 0}. Therefore, it
is quite natural to define anti-phase synchronization er-
rors and their time derivatives as

e1 = x1 + x2, ė1 = ẋ1 + ẋ2,

e2 = x3, ė2 = ẋ3. (6)

Writing the error dynamics as a set of first order diffe-
rential equations yields

d
dt


e1
ė1
e2
ė2

 =


0 1 0 0

−ω2 −(2ζω − α) 2ω2 4ζω
0 0 0 1

mω2

m3

(
2ζωm
m3

− αm
m3

)
a b


︸ ︷︷ ︸

A


e1
ė1
e2
ė2

 ,

(7)
where a = −

(
2ω2m
m3

+ ω2
3

)
and b =

−
(

4ζωm
m3

+ 2ζ3ω3

)
. It is well known from stability

theory for linear systems that (7) is asymptotically
stable, if and only if the real parts of the eigenvalues of
matrix A are negative. Then, the following proposition
holds.

Proposition 1. System (5) will converge to the set
where x1(t) = −x2(t), ẋ1(t) = −ẋ2(t), x3(t) = 0,
ẋ3(t) = 0 provided that all roots of the characteristic
polynomial:

p(λ) = λ4 + (2ζω + α+ 2ζ3ω3 + 4ζω
m

m3
)λ3

+(4ζωζ3ω3 + 2αζ3ω3 + ω2
3 + ω2 + 2

m

m3
ω2)λ2

+(αω2
3 + 2ζωω2

3 + 2ω2ζ3w3)λ+ ω2ω2
3
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all have negative real parts.

For a given set of fixed parameters m,ω, ω3, α, ζ, and
ζ3, the only way to modify the roots of the characteris-
tic polynomial (8) is by varying m3.

Remark 1. When the oscillators reach anti-phase syn-
chronization - i.e. x1 = −x2, and ẋ1 = −ẋ2 - the
displacement of the bar converges to zero, while for the
in-phase motion, where x1 = x2, and ẋ1 = ẋ2, the dis-
placement of the bar converges to a small periodic mo-
tion. Therefore, it is quite natural to think that a rela-
tively light bar will facilitate the in-phase synchroniza-
tion and for a relatively heavy bar, the anti-phase syn-
chronization seems more feasible. Consequently, for
relatively small values of the mass m3, in comparison
with the mass of the oscillators, i.e. large µ, in-phase
synchronization is expected. For larger values of the
mass m3, in comparison with the masses of the osci-
llators, i.e. small µ, anti-phase synchronization is ex-
pected. For a really heavy bar, i.e. µ→ 0, no coupling
behaviour is expected. This reasoning can be linked to
Huygens’ situation, where the coupling strength µ (the
ratio of clocks masses to wooden bar mass) is small due
to the fact that Huygens had placed some extra weight
(around 100 pounds) in the cases of the clocks in or-
der to keep them upright in stormy seas. In such situa-
tions (small µ), Huygens always observed anti-phase
synchronization [Bennett et al., 2002].

Remark 2. Proposition 1 cannot be directly linked to
the original system (1)-(2). Therefore, the most that can
be said is that in the interval of m3 where Proposition
1 holds, anti-phase synchronization in system (1)-(2) is
likely to occur.

Notice that the analytical study of in-phase synchro-
nization turns out to be more difficult. This is partly be-
cause the assumptions |x1(t)| < xref , |x2(t)| < xref
∀t ∈ [0, t1] for some t1 > 0 and α > 2ζω used in
Proposition 1, yield a linear error system (similar to
(7)), which is independent of m3 and moreover, the
obtained matrix A is not Hurwitz. It seems that the ap-
proach used for analyzing the anti-phase motion does
not lead to insight in the stability of the in-phase syn-
chronized behaviour. Therefore, a complete nonlinear
stability analysis should be carried out in order to prove
the stability of the in-phase synchronized motion. This
problem is beyond the scope of this article and needs
further research.

3.2 Energy-based escapement mechanism
As discussed before, due to the damping present in

system (1), it is necessary to introduce a control input in
order to have sustained oscillations in steady-state. In
this section, it is assumed that the resupply of energy
into the system is provided by the following energy-
based controller

Ui = −λ (Hi −H∗) ẋi, i = 1, 2, (8)

where λ ∈ R+, H∗ = 1
2κx

2
ref is a reference energy

level, xref is the reference amplitude, κ = κ1, κ2, and
Hi is the Hamiltonian for the uncoupled and unforced
oscillator i, which is defined as

Hi =
1

2
miẋ

2
i +

1

2
κix

2
i , i = 1, 2. (9)

Furthermore, each Hamiltonian satisfies the relation

Ḣi = −λ(Hi −H∗)ẋ2i , i = 1, 2. (10)

From this equation, it can be concluded that there exist
values of λ such that the displacement of each oscillator
in (1) converges to a periodic solution, which corres-
ponds to the motion of the uncoupled oscillator with
energy equal to H∗.
Furthermore, it should be noticed that system

(5) with input (8) has at least two invariant
sets, namely the anti-phase invariant set Ω1 :=
{x1 = −x2, ẋ1 = −ẋ2, x3 = 0, ẋ3 = 0} and the in-
phase invariant set Ω2 := {x1 = x2, ẋ1 = ẋ2}.
The local stability analysis for the set Ω1 can be per-

formed by linearizing system (5) with input (8) around
the set H1(x1, ẋ1) = H2(x2, ẋ2) = H∗. This yields

ẍ1 + ẍ2 = −ω2(x1 + x2)− 2ζω(ẋ1 + ẋ2) (11)
+2ω2x3 + 4ζωẋ3

ẍ3 = − m

m3
(ẍ1 + ẍ2)− ω2

3x3 − 2ζ3ω3ẋ3.

This set of equations coincides with (7) with α = 0,
i.e. it can be rewritten as

d
dt


e1
ė1
e2
ė2

 =


0 1 0 0

−ω2 −2ζω 2ω2 4ζω
0 0 0 1

mω2

m3

(
2ζωm
m3

)
a b


︸ ︷︷ ︸

A


e1
ė1
e2
ė2

 .

(12)
Since A is Hurwitz for any combination of positive pa-
rameter values, the set Ω1 is locally stable. Therefore,
the anti-phase synchronous motion of the oscillators is
locally asymptotically stable.

3.3 Experimental results
In this subsection, experimental results are presented

in order to show different synchronizing limit be-
haviours. First, the discontinuous controller (2) is ap-
plied to system (1). All experiments are performed as-
suming the constant parameter values presented in Ta-
ble 1. Only m3, the mass of the coupling bar, is varied.
Two experiments are presented: one corresponding to
a light coupling bar, where in-phase sync is observed,
and a second experiment corresponding to a heavier
bar, where the conditions of Proposition 1 are fulfilled
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Osc. 1 Osc. 2 Coupling bar

κi

[
N
m
]

37.108 37.108 388.71

βi

[
Ns
m

]
2.1378 2.1378 3.2656

mi [kg] 0.210 0.210 [4.1-8.818]

Table 1. Parameters values for the experiments.

for t ∈ [0, t1] and anti-phase synchronization of the
nonlinear system is therefore likely to occur and actua-
lly does occur. In all experiments, the phase difference
(denoted ∆phase) between the two oscillators is com-
puted [Bennett et al., 2002].
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Figure 3. Experimental results: the oscillators synchronize in-
phase (in figures a) and b) solid line: x1, dashed-dotted line: x2).

In the first experiment, no extra mass is added to the
coupling bar, hence m3 = 4.1 [kg]. The oscillators
are released from the initial conditions x1(0) = 1.97
[mm], ẋ1(0) = 0, x2(0) = −2.13 [mm], ẋ2(0) = 0,
and x3(0) = ẋ3(0) = 0, and the parameter values
of the control input (2) are: xref = 3 [mm], and
α1 = α2 = 10.187

[
1
s
]
. In Figures 3a and 3b, xref

and its negative counterpart are indicated by two hori-
zontal black dotted lines.
As becomes clear from Figure 3a, although the osci-

llators are released close to anti-phase synchronization,
in steady-state the oscillators synchronize in-phase as
depicted in Figures 3b and 3d. Additionally, Figure 3c
shows the projection of the displacements of the two
oscillators onto the plane (x1,x2). The black part of
the curve corresponds to the transient behaviour prior
to reach the in-phase steady-state part of the curve in-

dicated in grey.
The behaviour of the coupling bar is depicted in Fi-

gure 5a. Initially, the displacement of the bar is very
small due to the anti-phase like start-up. When the
phase difference between the oscillators converges to
zero, the oscillation corresponding to the displacement
of the bar increases until the oscillators synchronize in-
phase. Then, the bar keeps oscillating with fixed fre-
quency and amplitude.
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Figure 4. In this experiment, the oscillators synchronize in anti-
phase (in figures a) and b) solid line: x1, dashed-dotted line: x2).
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Figure 5. Displacement of the bar when the oscillators synchronize:
a) in-phase, b) in anti-phase.
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In a second experiment, the mass of the coupling bar
is increased by adding two steel plates of 2.359 [kg]
each. This yields m3 = 8.818 [kg]. Note that with this
value of m3 and assuming parameter values as given
in Table 1, the conditions for Proposition 1 are fulfilled
and anti-phase steady-state motion is likely to occur.
As depicted in Figure 4a, the oscillators are released
from initial conditions close to in-phase, x1(0) = 1.97
[mm], ẋ1(0) = 0, x2(0) = 2.13 [mm], ẋ2(0) = 0,
and x3(0) = ẋ3(0) = 0. After the transient behaviour,
the oscillators synchronize in anti-phase as can be
seen in Figures 4b and 4d. In this case, Proposition 1
is only applicable for t < t1 = 21.6 [s], where t1 is
the time, at which |xi| = xref for the first time, and
the behaviour becomes nonlinear. Figure 4c shows
the projection of the displacements corresponding
to the oscillators onto the plane (x1,x2). Again, the
black part of the curve corresponds to the transient
behaviour prior to reach the steady-state anti-phase
indicated by the grey part of the curve. Ideally, the
displacement of the coupling bar should go to zero.
However, due to the fact that the amplitudes of the
oscillators differ slightly, because in the experimental
setup the oscillators are not completely identical, the
coupling bar does not come to a complete standstill
as depicted in Figure 5b. Nevertheless, the phase
difference between the oscillators is approximately π
[rad] as depicted in Figure 4d. As a matter of fact,
the anti-phase synchronized motion observed in this
experiment can also be seen if the oscillators are
released from the same initial conditions as used in
experiment 1.

For the next experiments, the energy-based con-
troller (8) is applied to the oscillators. The suspended
bar is again allowed to oscillate freely and the expe-
riments are carried out by using the same parameter
values presented in Table 1.

In the first experiment, no extra mass is added to the
coupling bar, hence m3 = 4.1 [kg]. The oscillators are
released from the initial conditions x1(0) = 2.7 [mm],
x2(0) = −2.9 [mm], ẋ1(0) = ẋ2(0) = x3(0) =
ẋ3(0) = 0. The parameters in controller (8) are taken
to be λ = 2.907·103, κ = 37.108

[
N
m
]
, and xref = 6.5

[mm].

The oscillators are released close to anti-phase sync,
as depicted in Figure 6. Nevertheless, in steady-state
the system synchronizes in-phase. Additionally, Figu-
re 6 shows that in steady-state the amplitudes corres-
ponding to the displacements x1, x2 are approximately
equal and the phase difference between the oscillators
is 0 rad.

Initially, the displacement of the bar, i.e. x3, is very
small due to the anti-phase start-up. When one of the
oscillators decreases its amplitude, the oscillation co-
rresponding to the bar displacement increases until the
moment the oscillators synchronize in-phase. After
that, the bar keeps oscillating with a fixed frequency
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Figure 6. Experimental results. In-phase synchronization occurs
for m3 = 4.1 [kg] (in figures a) and b) solid line: x1, dashed-
dotted line: x2).
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Figure 7. The mass of the coupling bar is increased to m3 =
8.818 [kg]. As a consequence, the oscillators synchronize in anti-
phase (in figures a) and b) solid line: x1, dashed-dotted line: x2).

and amplitude as depicted in Figure 6c.
In a second experiment, the mass of the coupling bar

is increased by again adding two steel plates of 2.359
[kg] each. This again yields m3 = 8.818 [kg]. The
oscillators are released from initial conditions close to
in-phase, x1(0) = 2.7 [mm], ẋ1(0) = 0, x2(0) = 2.9
[mm], ẋ2(0) = 0, and x3(0) = ẋ3(0) = 0. In this
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case, the system synchronizes in anti-phase as can be
seen in Figure 7. Ideally, the displacement of the cou-
pling bar denoted as x3 should go to zero. However,
due to the fact that the amplitudes of the oscillators,
denoted as x1 and x2, differ by a factor 1.2, the cou-
pling bar does not come to a complete standstill as de-
picted in Figure 7c. Nevertheless, the phase difference
between the oscillators is approximately π rad as de-
picted in Figures 7b and 7d.
These experimental results show that when the system

synchronizes in anti-phase, the oscillation frequency
is approximately the same as the natural frequency of
the oscillators, whereas for the in-phase synchroniza-
tion case, the oscillation frequency is approximately the
same as the natural frequency of the coupling bar.

4 Synchronization of two coupled van der Pol os-
cillators

In this section, the synchronization of two van der Pol
oscillators is analyzed.
Consider the mechanical system of Figure 1 with
Ui = 0 (i = 1, 2, 3), and damping characteristic

βi(qi) = λ
(
aq2i − 1

)
, i = 1, 2, (13)

where qi = xi − x3, λ ∈ R+, and a ∈ R+. Then, the
equations of motion are

m1ẍ1 = −κ1(x1 − x3)− β1(q1)(ẋ1 − ẋ3)

m2ẍ2 = −κ2(x2 − x3)− β2(q2)(ẋ2 − ẋ3) (14)

m3ẍ3 = −
2∑

i=1

miẍi − κ3ẋ3 − β3ẋ3.

The system under consideration represents two van
der Pol oscillators coupled through a movable support.
It is possible to show that system (14) has two invariant
manifolds [Belykh et al., 2008]:

Min := {(x1, ẋ1) = (x2, ẋ2)}, (15)
Manti := {(x1, ẋ1) = (−x2,−ẋ2), (16)

x3 = ẋ3 = 0}.

Therefore, system (14) has at least two possible limit
behaviours, namely in-phase and anti-phase synchro-
nization.
Moreover, the limit synchronizing behaviour can not

only be influenced by the masses of the oscillators re-
lative to the mass of the coupling bar as will be shown
later, but also by the initial conditions as depicted in
Figure 8, which has been obtained by computer simu-
lations. For this analysis, all parameter values of sys-
tem (14) were fixed to the values given in Table 3 with
λ = 3, and a = 1.8 × 105. Only the initial condi-
tions were varied. Moreover, it should be noted that

only part of the initial conditions is varied here. All
other initial conditions are zero. In the plot, black
points represent initial conditions that go to anti-phase
e = (x1 + x2) = 0, while red points represent initial
conditions that go to in-phase e = (x1 − x2) = 0.
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Figure 8. Projection of the limit behaviour onto the (x1, x2) plane
for a set of fixed parameters. Black points represent initial conditions
that go to anti-phase e = (x1 + x2) = 0, while red points
represent initial conditions that go to in-phase e = (x1 − x2) =
0.

4.1 Adjustment of the experimental setup to
mimic the van der Pol oscillators

The adjustment of the setup of Figure 1 is made by u-
sing feedback control. This requires to design suitable
controllers Ui, i = 1, 2, 3. First, cancellation of a part
of the original dynamics (1) and secondly, enforcement
of the dynamics (14) corresponding to two coupled van
der Pol oscillators is required. The cancellation part
is achieved by using an approximated model obtained
by parametric identification in combination with a ro-
bust observer [van den Elshout, 2010; Rosas, Alvarez,
Fridman (2006)]. This observer reconstructs the state
vector, since in the experimental setup only positions
are measured.
The experimental setup depicted in Figure 1 is ad-

justed to mimic system (14) by defining the actuator
forces of system (1) as follows

Ui = mi

(
ω2
i (xi − x3) + 2ζiωi(ẋi − ẋ3)

)
−κi(xi − x3)− βi(qi)(ẋi − ẋ3), i = 1, 2,(17)

U3 = m3

(
ω2
3x3 + 2ζ3ω3ẋ3 − ψ(·)

)
− κ3x3 − β3ẋ3

+

2∑
i=1

[κi(xi − x3) + βi(qi)(ẋi − ẋ3)] . (18)

whereψ(·) =
∑2

i=1 µi

[
κi

mi
(xi − x3) +

βi(qi)
mi

(ẋi − ẋ3)
]
.
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Osc. 1 Osc. 2 Coupling bar

ωi [rad/s] 12.5521 14.0337 9.7369

ζi [−] 0.3362 0.4226 0.0409

mi [kg] 0.198 0.210 4.1

Table 2. Parameters values for the experiments according to model
(1).

Osc. 1 Osc. 2 Coupling bar

κi

[
N
m
]

37.108 37.108 388.71

mi [kg] 1.210 1.210 4.1

Table 3. Parameters values for the experiments according to model
(14).

In closed-loop, the dynamics of system (1) with con-
trollers (17)-(18) coincide with dynamics (14).

4.2 Experimental results
The experimental setup of Figure 1 is used in order to

experimentally investigate the synchronizing behaviour
of two coupled van der Pol oscillators.
Hence, we consider model (1) with parameter values

given in Table 2 and controls (17)-(18) with parameter
values given in Table 3 except that m1 = m2 = 1 [kg],
and λ = 0.1, a = 1.8× 105.
In a first experiment, the oscillators are released from

the initial conditions x1(0) = 4.9 [mm], x2(0) = 4.8
[mm]. The remaining initial conditions are taken to be
zero.
Although the oscillators are released close to in-phase

motion, as depicted in Figure 9a, the system converges
to the anti-phase manifold (16) as becomes clear from
Figure 9b and as a consequence the oscillations in the
coupling bar decay as shown in Figure 9c. Indeed, the
anti-phase synchronization of the coupled van der Pol
oscillators is illustrated further by projecting the dis-
placements corresponding to the oscillators in the plane
(x1, x2) as depicted in Figure 9d. The dark grey part
of the curve corresponds to the initial in-phase motion
whereas the light grey corresponds to the transient be-
haviour prior to reach the anti-phase part of the curve
indicated in black.
In a second experiment, the oscillators are released

from initial conditions close to anti-phase motion, i.e.
x1(0) = −4.9 [mm] and x2(0) = 4.8 [mm], as de-
picted in Figure 10a. The remaining initial conditions
are taken to be zero. The masses of the oscillators,
corresponding to the virtual system (14), are decreased
such that m1 = m2 = 0.210 [kg] and the value of the
parameter λ is increased to λ = 3. As a result, the
van der Pol oscillators converge to the in-phase mani-
fold (15), as depicted in Figure 10b. The coupling bar,
which is initially at rest, starts moving until it reaches
an oscillation with constant amplitude and frequency as
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Figure 9. Experiment in which two coupled van der Pol oscillators
synchronize in anti-phase (in figures a) and b) solid line: x1, dashed-
dotted line: x2).

depicted in Figure 10c. The steady-state behaviour is
illustrated further by projecting the displacements co-
rresponding to the oscillators in the plane (x1, x2) as
depicted in Figure 10d. The initial behaviour, is de-
noted by the dark grey part of the curve whereas the
steady-state behaviour is represented by the black part
of the curve. Clearly, the van der Pol oscillators are
synchronized in-phase.

5 Conclusions and recommendations
Experimental analyses related to the phase synchro-

nization occurring in nonlinear oscillators with Huy-
gens’ coupling have been presented. For the case of
two mass-spring-damper oscillators, two types of con-
trollers have been considered. It has been shown that
the coupling strength (the ratio between the mass of the
oscillators and the mass of the bar) influences the onset
of in-phase and anti-phase synchronization. Moreover,
the synchronized motion in the oscillator is indepen-
dent of the kind of controller used to resupply energy
into the system. Additionally, by using state feedback,
the dynamics of our experimental setup has been con-
verted to the dynamics of two van der Pol oscillators.
In this case, the limit synchronizing behaviour not only
depends on the coupling strength but also on the initial
conditions. In summary, Huygens’ coupling seems to
generalize the synchronized phenomenon in the sense
that not only pendulum clocks but also other arbitrary
second order oscillators may spontaneously synchro-
nize. With respect to the presented synchronization re-
sults, it is still necessary to carry out a complete and
rigorous nonlinear stability analysis.
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Figure 10. In this experiment the van der Pol oscillators synchro-
nize in-phase (in figures a) and b) solid line: x1, dashed-dotted line:
x2).
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