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We have recently explored optimum unambiguous discrimination problems under different a pri-
ori knowledge. In general, a priori knowledge in optimum unambiguous discrimination problems
can be classed into two types: a priori knowledge of discriminated states themselves and a priori
probabilities of preparing the states. It is further clarified that no matter whether a priori probabil-
ities of preparing discriminated states are available or not, what type of discriminators one should
design just depends on what kind of the knowledge of discriminated states. This is in contrast
to the observation that choosing the parameters of discriminators relies on both types of a priori
knowledge.

PACS numbers:

I. INTRODUCTION

Recently, quantum information and quantum compu-
tation is the focus of research, and a great progress
of quantum information has been made in both theo-
retical and experimental aspects[1]. However, a care-
ful thinker may critically ask if there is any special
problems in the domain of quantum information pro-
cessing from the view point of decision theory. Re-
cently, we attempted to give an interesting answer: A
priori knowledge plays special role in the domain of
quantum information processing. Since quantum states
discrimination[2–5] is very fundamental in the domain
of quantum information processing[6], it is reasonable to
carefully explore optimum unambiguous discrimination
problems under various a priori knowledge. To authors’
knowledge, optimum unambiguous discrimination prob-
lems have not been thoroughly investigated under various
a priori knowledge so far. The rest of this paper is or-
ganized as follows. In Sect. II, we review the results
on optimal unambiguous discrimination with the knowl-
edge of the preparation probabilities of two discriminated
states. Furthermore, we study the optimal unambiguous
discrimination without a priori probabilities of prepa-
ration two discriminate states in Sect. III. The paper
briefly concludes with Sect. IV.

II. OPTIMAL UNAMBIGUOUS
DISCRIMINATION PROBLEMS WITH

KNOWLEDGE OF A PRIORI PREPARING
PROBABILITY

In this section, we first review the results on optimal
unambiguous discrimination problems with the knowl-
edge of a priori preparing probabilities. According to
what kind of classical knowledge can be utilized, the four
cases are discussed in the three subsections. (1)Case A1,

without classical knowledge of either state but with a
single copy of unknown states; (2) Case A2, with only
classical knowledge of one of the two states and a single
copy of the other unknown state; (3)Case A3, with only
classical knowledge of one of the two states and the ab-
solute value of the inner product of both states, and also
with a single copy of the other unknown state; (4) Case
A4, with classical knowledge of both states.

The A1 and A4 cases will be investigated in subsection
A and C, respectively, and the A2 and A3 cases will be
studied in subsection B.

A. Optimal unambiguous discrimination problems
without classical knowledge of discriminated states

In this subsection, we review the result of Ref. [7], and
further discuss the optimal unambiguous discrimination
problems in which the preparing probabilities is given,
but none classical knowledge of discriminated states is
available.

Given two unknown quantum states |ψ1〉 and |ψ2〉, we
can construct a device to unambiguously discriminate be-
tween them. Two classically unknown states |ψ1〉 and
|ψ2〉 are provided as two inputs for two program regis-
ters, respectively. Then we are given another qubit that
is guaranteed to be one of two unknown states |ψ1〉 and
|ψ2〉 stored in the two program registers. Our task is to
determine, as best we can, which one the given qubit is.
We are allowed to fail, but not to make a mistake. What
is the best procedure to accomplish this? Our task is
then reduced to the following measurement optimization
problem.

One has two input states

|Ψin
1 〉 = |ψ1〉A|ψ2〉B |ψ1〉C ; |Ψin

2 〉 = |ψ1〉A|ψ2〉B |ψ2〉C (1)

where the subscripts A and B refer to the program reg-
isters, and the subscript C refers to the data register.
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Our goal is to unambiguously distinguish between these
inputs.

Let the elements of our POVM (positive-operator-
valued measure) be Π1, corresponding to unambiguously
detecting |ψ1〉, Π2, corresponding to unambiguously de-
tecting |ψ2〉, and Π0, corresponding to failure, respec-
tively. The probabilities of successfully identifying the
two possible input states are given by

〈Ψin
1 |Π1|Ψin

1 〉 = p1; 〈Ψin
2 |Π2|Ψin

2 〉 = p2 (2)

and the condition of no errors implies that

Π1|Ψin
2 〉 = 0; Π2|Ψin

1 〉 = 0 (3)

In addition, because the alternatives represented by the
POVM exhaust all possibilities, we have that

Π1 + Π2 + Π0 = I (4)

Since we have no classical knowledge about |ψ1〉 and |ψ2〉,
the right way of constructing POVM operators is to take
advantage of the symmetrical properties of the states.
Denoting |1〉 and |0〉 as two vectors of a basis, we define
the antisymmetric state

|ψ−BC〉 =
1√
2
(|0〉B |1〉C − |1〉B |0〉C) (5)

and

|ψ−AC〉 =
1√
2
(|0〉A|1〉C − |1〉A|0〉C) (6)

and introduce the projectors to the antisymmetric sub-
spaces of the corresponding qubit as

¶as
BC = |ψ−BC〉〈ψ−BC |;¶as

AC = |ψ−AC〉〈ψ−AC | (7)

We now can take for Π1 and Π2 operators

Π1 = λ1IA ⊗ ¶as
BC ; Π2 = λ2IB ⊗ ¶as

AC (8)

To assure that Π1, Π2 and Π0 = I − Π1 − Π2 be semi-
positive operators, the following constraints should be
satisfied:

2− λ1 − λ2 ≥ 0; 1− λ1 − λ2 +
3
4
λ1λ2 ≥ 0 (9)

After some calculations, we have pi = 1
2λi(1 − β2),

where i = 1, 2 and β = |〈ψ1|ψ2〉|. Suppose that η1 is
the preparation probability of |ψ1〉, the average success
probability is P = p1η1 + p2(1− η1).

Since we have knowledge of η1, our task is reduced
to designing λ1(η1) and λ2(η1) such that the following
average success probability

P =
1
2
[λ1η1 + λ2(1− η1)](1− β2) (10)

is maximal with the constrains given by Eq. (9). This is
to say, the loss function can be expressed as

J = max min
{η1}

{1
2
[λ1η1 + λ2(1− η1)](1− β2)} (11)

In this case, the optimum success probability has been
summarized as follows

P opt
0 (β, η1) =

{ 1
2 (1− η1)(1− β2) η1 ≤ 1

5
2
3 [1−

√
η1(1− η1)](1− β2) 1

5 ≤ η1 ≤ 4
5

1
2η1(1− β2) η1 ≥ 4

5
(12)

where the subscript 0 of P opt
0 means that we have no a

priori classical knowledge of |ψ1〉 and |ψ2〉 and the corre-
sponding optimal action parameters are given by

λ0,opt
1 (η1) =

{ 0 η1 ≤ 1
5

2
3 [2−

√
1−η1

η1
] 1

5 ≤ η1 ≤ 4
5

1 η1 ≥ 4
5

(13)

λ0,opt
2 (η1) =

{ 1 η1 ≤ 1
5

2
3 [2−

√
η1

1−η1
] 1

5 ≤ η1 ≤ 4
5

0 η1 ≥ 4
5

(14)

B. Optimal unambiguous discrimination problems
with partial classical knowledge of discriminated

states

In this subsection, we re-discuss the optimal unam-
biguous discrimination problem for the cases A2 and A3
from the view point of decision theory, and throw some
new insights, which are different from those in Ref. [8, 9].

Given one known quantum state |ψ1〉 and one unknown
quantum state |ψ2〉, we can construct a device that unam-
biguously discriminate between them. We shall consider
the following problem which may be a simple version of
a programmable state discriminator. The unknown state
|ψ2〉 is provided as an input for the program register.
Then we are given another qubit that is guaranteed to
be in the known state |ψ1〉 or the unknown state |ψ2〉
stored in the program register. Our task is to determine,
as best we can, which one the given qubit is. As in case
A1, we are allowed to fail, but not to make a mistake.
What is the best procedure to accomplish this?

In line with Ref. [7], one can construct such a de-
vice by viewing this problem as a task in measurement
optimization. The measurement is allowed to return an
inconclusive result but never an erroneous one. Thus, it
will be described by a POVM that will return outcome
1 (the unknown state stored in the data register matches
the known state |ψ1〉), 2 (the unknown state stored in
the data register matches |ψ2〉 in the program register),
or 0 (we do not learn anything about the unknown state
stored in the data register). Our task is then reduced to
the following measurement optimization problem.

One has two input states

|Ψin
1 〉 = |ψ2〉A|ψ1〉B ; |Ψin

2 〉 = |ψ2〉A|ψ2〉B (15)

where the subscript A refers to the program register (A
contains |ψ2〉), and the subscript B refers to the data reg-
ister. Our goal is to unambiguously distinguish between
these inputs.
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Let the elements of our POVM be Π1, correspond-
ing to unambiguously detecting |ψ1〉, Π2, corresponding
to unambiguously detecting |ψ2〉, and Π0, corresponding
to failure, respectively. The probabilities of successfully
identifying the two possible input states are given by

〈Ψin
1 |Π1|Ψin

1 〉 = p1; 〈Ψin
2 |Π2|Ψin

2 〉 = p2 (16)

and the condition of no errors implies that

Π1|Ψin
2 〉 = 0; Π2|Ψin

1 〉 = 0 (17)

In addition, because the alternatives represented by the
POVM exhaust all possibilities, we have that

Π1 + Π2 + Π0 = I (18)

Since we know nothing about |ψ2〉 but have the classical
knowledge of |ψ1〉, the right way of constructing POVM
operators is to take advantage of the symmetrical proper-
ties of the state as well as the classical knowledge of |ψ1〉.
Denoting |ψ⊥1 〉 as the unit vector orthogonal to |ψ1〉, we
define the antisymmetric state

|ψ−AB〉 =
1√
2
(|ψ1〉A|ψ⊥1 〉B − |ψ⊥1 〉A|ψ1〉B) (19)

and introduce the projectors to the antisymmetric sub-
spaces of the corresponding qubit as

¶as
AB = |ψ−AB〉〈ψ−AB | (20)

Furthermore, in terms of |ψ1〉, |ψ⊥1 〉 and the absolute
value of inner product β = |〈ψ1|ψ2〉|, we can obtain
|ψ2〉 = eiδβ|ψ1〉 +

√
1− β2|ψ⊥1 〉 where δ and β are un-

known real and 0 ≤ β ≤ 1.
Even though β may be unknown, it can be clearly il-

lustrated from the geometric point of view. Therefore,
we still consider the success probabilities of unambigu-
ously discriminating two states as a function of both the
preparation probabilities and the absolute value of inner
product β of two discriminated states.

By making full use of the knowledge of |ψ1〉 and |ψ⊥1 〉,
we construct the measurement operators Π1 and Π2 to
satisfy the no-error condition given by Eq.(17) as follows:

Π1 = λ1¶as
AB (21)

and

Π2 = λ2|ψ1〉A|ψ⊥1 〉BB〈ψ⊥1 |A〈ψ1|+λ3|ψ⊥1 〉A|ψ⊥1 〉BB〈ψ⊥1 |A〈ψ⊥1 |
(22)

where λ1, λ2 and λ3 are undetermined nonnegative real
numbers. Using the Eqs. (21) and (22), we have

p1 = 〈Ψin
1 |Π1|Ψin

1 〉 =
1
2
λ1(1− β2) (23)

p2 = 〈Ψin
2 |Π2|Ψin

2 〉 = λ2β
2(1− β2) + λ3(1− β2)2 (24)

By assuming that the preparation probabilities of |ψ1〉
and |ψ2〉 are η1 and η2 (where η2 = 1− η1), respectively,
we can define the average probability P of successfully
discriminating two states as

P = [
1
2
λ1η1 + λ2β

2η2 + λ3(1− β2)η2](1− β2) (25)

where β = |〈ψ1|ψ2〉|, and our task is to maximize the
performance Eq. (25) subject to the constraint that
Π0 = I − Π1 − Π2 is a positive operator. It can be
demonstrated that one cannot maximize Eq. (25) every-
where simultaneously without the classical knowledge of
β. Still, we can give some further analysis.

To assure that Π0, Π1 and Π2 are positive operators,
we have the following inequality constraints:

1− λ1 − λ2 +
1
2
λ1λ2 ≥ 0 (26)

0 ≤ λi ≤ 1(i = 1, 2, 3) (27)

Subsequently, we will discuss our strategies for the A2
and A3 cases.

(i) For the A2 case, we have the knowledge of preparing
probability η1, but no knowledge of β.

Our strategy is to design λ1,wβ
1 (η), λ1,wβ

2 (η) and
λ1,wβ

3 (η) to maximize the minimal performance

J = max min
{β}

[
1
2
λ1η1+λ2(1−η1)+(λ3−λ2)(1−β2)(1−η1)]

(28)
subject to the constraints described by Eqs. (26) and
(27).

No matter what η1 is, one should always choose
λ1,wβ

3 (η1) = 1. As for λ1,wβ
1 (η1) and λ1,wβ

2 (η1), they have
to depend on η1.

In short, we have

λ1,wβ
1 (η1) =

{ 0 η1 ≤ 1
2

2(1−
√

1−η1
η1

) 1
2 ≤ η1 ≤ 4

5

1 η1 ≥ 4
5

(29)

λ1,wβ
2 (η1) =

{ 1 η1 ≤ 1
2

2(1−
√

η1
1−η1

) 1
2 ≤ η1 ≤ 4

5

0 η1 ≥ 4
5

(30)

and

λ1,wβ
3 (η1) = 1 (31)

Furthermore, we obtain the actual optimum success
probability in this strategy:

Pwβ
1 (β, η1) =

{ Pwβ
11

(β, η1) η1 ≤ 1
2

Pwβ
12

(β, η1) 1
2 ≤ η1 ≤ 4

5

Pwβ
13

(β, η1) η1 ≥ 4
5

(32)
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with

Pwβ
11

(β, η1) = (1− η1)(1− β2)) (33)

Pwβ
12

(β, η1) = [1+β2(1−η1)−(1+β2)
√

η1(1− η1)](1−β2

(34)

Pwβ
13

(β, η1) = (1− 1
2
η1 − β2(1− η1))(1− β2) (35)

where the subscript 1 of Pwβ
1 means that we just have

a priori classical knowledge of |ψ1〉, one of two discrimi-
nated states, and the superscript wβ of Pwβ

1 implies that
the optimum success probability is defined in terms of
the worst case for β.

(ii) With a priori classical knowledge of both
|〈ψ1|ψ2〉| = β and η1 in hand, our task in the third case
is to get the optimum values λ1+,opt

1 (β, η1), λ1+,opt
2 (β, η1)

and λ1+,opt
3 (β, η1) to optimize the average success prob-

ability

J = [
1
2
λ1η1 + λ2β

2(1− η1) + λ3(1− β2)(1− η1)](1− β2)

(36)
subject to the constraints Eqs. (26) and (27).

After some calculations, we have

λ1+,opt
1 (β, η1) =

{ 0 η1 ≤ β2

1+β2

2(1− β
√

1−η1
η1

) β2

1+β2 ≤ η1 ≤ 4β2

1+4β2

1 η1 ≥ 4β2

1+4β2

(37)

λ1+,opt
2 (β, η1) =

{ 1 η1 ≤ β2

1+β2

2− 1
β

√
η1

1−η1

β2

1+β2 ≤ η1 ≤ 4β2

1+4β2

0 η1 ≥ 4β2

1+4β2

(38)
and

λ1+,opt
3 (β, η1) ≡ 1 (39)

Taking Eq. (36) into consideration, we obtain the cor-
responding optimum success probabilities:

P opt
1+ (β, η1) =

{ P opt
1+1

(β, η1) η1 ≤ β2

1+β2

P opt
1+2

(β, η1) β2

1+β2 ≤ η1 ≤ 4β2

1+4β2

P opt
1+3

(β, η1) η1 ≥ 4β2

1+4β2

(40)

with

P opt
1+1

(β, η1) = (1− η1)(1− β2) (41)

P opt
1+2

(β, η1) = [1 + β2(1− η1)− 2β
√

η1(1− η1)](1− β2)
(42)

P opt
1+3

(β, η1) = [1− 1
2
η1 − β2(1− η1)](1− β2) (43)

where the subscript 1+ of P opt
1+ means that we have a

priori classical knowledge of one of the two discriminated
states and the absolute value of the inner product of the
two states.

C. Optimal unambiguous discrimination problems
with complete classical knowledge

In this subsection, we recall the result of Ref. [6, 10]
for the A4 case.

If we have complete a priori classical knowledge of
both |ψ1〉 and |ψ2〉, the measurement is performed on the
detected qubit. One can select the detection operators
as

Π1 = λ1|ψ⊥2 〉〈ψ⊥2 |; Π2 = λ2|ψ⊥1 〉〈ψ⊥1 | (44)

Our task is to choose λ1 and λ2 based on a priori
information such that the average success probability

P = [λ1η1 + λ2(1− η1)](1− β2) (45)

is maximized.
To assure that Π0, Π1 and Π2 are positive operators,

we have the following inequality constraints:

1− λ1 − λ2β
2 ≥ 0 (46)

and

1− λ1 − λ2 + (1− β2)λ1λ2 ≥ 0 (47)

where |〈ψ1|ψ2〉| = β.
Since we have knowledge of preparing probability η1

and β, we will make the following decision

λ2,opt
1 (β, η1) =

{ 0 η1 ≤ β2

1+β2

1
1−β2 (1− β

√
1−η1

η1
) β2

1+β2 ≤ η1 ≤ 1
1+β2

1 η1 ≥ 1
1+β2

(48)

λ2,opt
2 (β, η1) =

{ 1 η1 ≤ β2

1+β2

1
1−β2 (1− β

√
η1

1−η1
) β2

1+β2 ≤ η1 ≤ 1
1+β2

0 η1 ≥ 1
1+β2

(49)
Furthermore, we can obtain the optimum success proba-
bility for this case (also as per Ref. [6, 10]).

P opt
2 (β, η1) =

{ P opt
21

(β, η1) η1 ≤ β2

1+β2

P opt
22

(β, η1) β2

1+β2 ≤ η1 ≤ 1
1+β2

P opt
23

(β, η1) η1 ≥ 1
1+β2

(50)

with

P opt
21

(β, η1) = (1− η1)(1− β2) (51)

P opt
22

(β, η1) = 1− 2
√

η1(1− η1)β (52)

P opt
23

(β, η1) = η1(1− β2) (53)

where |〈ψ1|ψ2〉| = β, the subscript 2 of P opt
2 means that

we have the classical knowledge of both discriminated
states.
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III. OPTIMAL UNAMBIGUOUS
DISCRIMINATION PROBLEMS WITHOUT A

PRIORI PREPARING PROBABILITY

In this section, we will discuss various optimal unam-
biguous discrimination problems without a priori prepar-
ing probability. Corresponding to what have been ex-
plored in section III, we have also four cases taken into
consideration as follows: (1) Case B1, without classical
knowledge of either state but with a single copy of un-
known states;(2) Case B2, with classical knowledge of one
of the two states and a single copy of the other unknown
state;(3) Case B3, with classical knowledge of one of the
two states and the absolute value of the inner product
of both states, and also with a single copy of the other
unknown state; (4) Case B4, with classical knowledge of
both states.

The B1 and B4 cases will be investigated in subsection
A and C, respectively, and the B2 and B3 cases will be
studied in subsection B.

A. Optimal unambiguous discrimination problems
without classical knowledge of discriminated states

Since we have the same classical knowledge of discrimi-
nated states in this case as in Section II. A, we can follow
the analysis in Section II. A and choose Π1 and Π2 as Eqs.
(8).

To assure that Π1, Π2 and Π0 = I −Π1 −Π2 be semi-
positive operators, the constraints on λ1 and λ2 described
by Eq.(9) should be satisfied.

However, since we have no knowledge of preparing
probability, we have to design λ1 and λ2 without a pri-
ori information of η1. Our strategy is to maximize the
minimal performance

J = Pwη1
0 (β) = max min

{η1}
1
2
[λ1η1 + λ2(1− η1)](1− β2)

(54)
with the constraints in Eq. (9).

After careful calculations, we obtain that

λ0,wη1
1 = λ0,wη1

2 =
2
3

(55)

Substituting Eq. (55) into Eq. (54) yields

Pwη1
0 (β) =

1
3
(1− β2) (56)

B. Optimal unambiguous discrimination problems
with partial classical knowledge of discriminated

states

In this subsection, we will discuss the optimal unam-
biguous discrimination problems for the B2 and B3 cases
where partial classical knowledge but none knowledge of

preparing probabilities of discriminated states are avail-
able.

Since we have the same partial classical knowledge of
discriminated states in this section as in Section II.B, we
can follow the analysis in Section II.B and choose Π1 and
Π2 as Eqs.(21) and (22).

To assure that Π1, Π2 and Π0 = I −Π1 −Π2 be semi-
positive operators, the constraints on λ1 and λ2 described
by (26) and (27) should be satisfied.

Our task is to design λ1 and λ2 such that the average
success probability

P = [
1
2
λ1η1 + λ2β

2η2 + λ3(1− β2)η2](1− β2) (57)

is maximized.
Subsequently, we will discuss our strategies for the B2

and B3 cases, respectively.
(i) If we have neither the knowledge of preparing prob-

abilities nor the knowledge of β, our task is reduced to
designing λ1,wβη1

1 , λ1,wβη1
2 and λ1,wβη1

3 to maximize the
minimal performance

J = max min
{β,η1}

[
1
2
λ1η1+λ2(1−η1)+(λ3−λ2)(1−β2)(1−η1)]

(58)
subject to the constraints in Eqs. (26) and (27).

Following some similar calculations in the subsection
II. B, we have the optimal actions as follows

λ1,wβη1
1 = 3−

√
5;λ1,wβη1

2 =
1
2
(3−

√
5);λ1,wβη1

3 = 1 (59)

By substituting them into Eq. (25), we get the actual
success probability with regard to this strategy:

PA
1 (β, η1) = [

3−√5
2

+
√

5− 1
2

(1− β2)(1− η1)](1− β2)

(60)
and the optimum success probability in the worst case:

Pwβη1
1 (β) =

3−√5
2

(1− β2) (61)

where the subscript 1 of Pwβη1
1 means that we just have

a priori classical knowledge of |ψ1〉, one of two discrim-
inated states, and the superscript wβη1 implies that the
optimum success probability is defined in terms of the
worst case for both β and η1.

(ii) For the B3 case, we have the knowledge of β, but
no knowledge of preparing probability η1.

Our task is to design λ1+,wη1
1 (β), λ1+,wη1

2 (β) and
λ1+,wη1

3 (β) to maximize the minimal performance

J = max min
{η1}

[
1
2
λ1η1+λ2(1−η1)+(λ3−λ2)(1−β2)(1−η1)]

(62)
subject to the constraints given by Eqs. (26) and (27).

After some calculation, we have

λ1+,wη1
1 (β) =

{
1 β ≤

√
2

2

β2 + 2−
√

β4 + 4β2 β ≥
√

2
2

(63)



6

λ1+,wη1
2 (β) =

{ 0 β ≤
√

2
2

3
2 −

√
1
4 + 1

β2 β ≥
√

2
2

(64)

λ1+,wη1
3 (β) ≡ 1 (65)

Furthermore, we obtain the actual success probability:

PA
1+(β, η1) =

{ { 1
2 + ( 1

2 − β2)(1− η1)}(1− β2) β ≤
√

2
2

(1 + 1
2β2 − 1

2

√
β4 + 4β2)(1− β2) β ≥

√
2

2
(66)

and optimum success probabilities in the worst case

Pwη1
1+ (β) =

{
1
2 (1− β2) β ≤

√
2

2

(1 + 1
2β2 − 1

2

√
β4 + 4β2)(1− β2) β ≥

√
2

2
(67)

C. Optimal unambiguous discrimination problems
with complete classical knowledge of discriminated

states

This subsection discuss the optimal unambiguous dis-
crimination problem where complete classical knowledge
of discriminated states but none a priori probabilities of
preparing the discriminated states are available.

Here we have the same classical knowledge of discrim-
inated states in this case as in Section II. C, thus we can
follow the analysis in Section II. C and choose Π1 and Π2

as Eq. (44).
In order to assure that Π1, Π2 and Π0 = I−Π1−Π2 be

semi-positive, the constraints on λ1 and λ2 given by Eqs.
(46) and (47) should be satisfied where |〈ψ1|ψ2〉| = β.

And what we shall do here is the same, i.e., to choose
λ1 and λ2 based on a priori information such that the
average success probability

P = [λ1η1 + λ2(1− η1)](1− β2) (68)

with the constraints in Eqs. (46) and (47).

When we have no knowledge of preparing probability
η1, our task is to choose λ2,wη1

1 (β) and λ2,wη1
2 (β) to op-

timize the following performance

J = max min
{η1}

[λ1η1 + λ2(1− η1)](1− β2) (69)

with the constraints described by Eqs. (46) and (47).
In this case, we have

λ2,wη1
1 (β) = λ2,wη1

2 (β) =
1

1 + β
(70)

Pwη1
2 (β) = 1− β (71)

where the subscript 2 of Pwη1
2 means that we have the

classical knowledge of both discriminated states, and the
superscript wη1 implies that the optimum success prob-
ability is defined in terms of the worst case for η1.

IV. CONCLUSION

From the aforementioned results, we demonstrate that
there are two types of a priori knowledge in optimum am-
biguous state discrimination problems: a priori knowl-
edge of discriminated states themselves and a priori
probabilities of preparing the states. It is demonstrated
that both types of a priori knowledge can be utilized to
improve the optimum average success probabilities. It
is very interesting to find that both types of discrimina-
tors and the constraint conditions of action spaces are
decided just by the classical knowledge of discriminated
states. This is in contrast to the observation that both
the loss functions (optimum average success probabili-
ties) and optimal decisions depend on two types of a pri-
ori knowledge. The detailed discussion for the role of a
priori knowledge in the optimization of quantum infor-
mation processing can be found in our recent paper[11]
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