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Abstract
The geometric version of the traveling salesman prob-

lem (TSP) has been extensively studied, leading to the
development of various approaches for solving its spe-
cial cases. However, these algorithms often fall short
when applied to problems beyond the geometric TSP. In
this paper, we explore the pseudo-geometric TSP ver-
sion, a generalization of the geometric TSP, and propose
an adapted geometric algorithm for solving its specific
instances. We leverage the knowledge of error bounds
to estimate the reconstruction error of the TSP solution
even when using geometric approaches for the pseudo-
geometric TSP. This allows us to achieve reliable re-
sults despite uncertainties or noise in the data. We pro-
vide a concise description of our algorithmic adaptation
and present the results of computational experiments to
demonstrate its effectiveness.

Key words
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1 Introduction
The traveling salesman problem (TSP) is a well-known

optimization problem whose goal is to find the shortest
possible route that passes through a set of points (cities)
and returns to the starting point. TSP can be formulated
in different ways, depending on the problem instance.

∗Corresponding author.

Among the various formulation options, we note [Ga-
rey and Johnson, 1979; Gutin and Punnen, 1997; Hrom-
kovič, 2003; Hromkovič, 2004]; of course, all these
options are very similar. According to the classifica-
tion given in [Hromkovič, 2004], the traveling salesman
problem is an example of an optimization problem that
belongs to the most complex class NPO(V). This class
contains all optimization problems that, under an addi-
tional assumption such as P ̸= NP, have a time complex-
ity that cannot be bound by any polylogarithmic function
for all possible polynomial algorithms. Let us describe
the TSP according to [Hromkovič, 2003; Hromkovič,
2004]; in this paper, we shall not repeat the detailed de-
scription of the problem statement.

One of the most common variants of the TSP is the
geometric TSP [Hromkovič, 2004], which is character-
ized by a set of points and their distances, where the dis-
tances are defined by the Euclidean distance between the
points. In the case of the geometric TSP, we can use a
number of algorithms to find an approximate solution to
the problem. One of the most popular algorithms is the
nearest neighbor algorithm, which starts from a random
point and repeatedly selects the nearest unvisited point
as the next point to visit. Another popular algorithm is
the convex hull method, which uses the convex hull of
the set of points to reduce the number of points that need
to be considered. These algorithms can be used to find
approximate solutions to the problem with a high degree
of accuracy.

The TSP can be defined also as a random problem, if
the points are not defined by their coordinates, but by a
set of random numbers. In this case, it is not possible to
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use geometric algorithms to find solutions, and instead,
more general optimization techniques must be used. For
example, a common approach is to use the branch and
bound method, when we systematically enumerate all
possible solutions to a problem and determine which is
the best based on some objective criteria. This is done
by dividing the problem into smaller sub-problems (or
branches) and solving each sub-problem separately. The
solutions to these sub-problems are then compared, and
the best solution is chosen as the overall best solution.

However, in some cases, the problem instance may not
be defined by the Euclidean distance between the points,
but by some other metric that has some degree of ran-
domness or noise built into it. This variant of the TSP
is called the pseudo-geometric TSP [Melnikov, 2001],
where the initial data are formed as follows:

• for a given geometric TSP, a special vector

R = (r1, . . . , rm)

is added, where m = |E|;
• all ri are independent identically distributed random

variables with a normal distribution with µ = 1 and
a given “acceptable” value of the square deviation
σ;

• in practice, we make sure that the random variable
gets into the borders [0, 2];

• each element of the cost matrix (c(u, v) (we denote
ci for some i ∈ { 1, . . . ,m }) is replaced for ci · ri.

It is essential to highlight that the geometric TSP-version
can be regarded as a special case of pseudo-geometric
one with the deviation value σ = 0.

The approach to solve the pseudo-geometric variant of
the traveling salesman problem, as discussed in this arti-
cle aligns closely with the technique applied to the prob-
lem of reconstructing the distance matrix between DNA
chains. Both problems utilize a pseudo-optimal configu-
ration, as mentioned in [Melnikov et al., 2018; Melnikov
et al., 2022]. Delving into more detail, both problems
involve the placement of all absent elements (either zero
or equivalent to infinity) into the depleted matrix accord-
ing to certain rules. From a formal point of view, itera-
tive algorithms similar to the rapid descent method can
be utilized, however, with a few hundred variables, such
methods are very impractical for implementation. Con-
sequently, in both cases, we use heuristic methods which
involve carefully composed descriptions of sequentially
placed (or replaced) elements.

In the previous paragraph, the connection of two men-
tioned problems (the pseudo-geometric version of the
TSP and the restoration of the DNA matrix) was noted at
the level of solution algorithms. However, it is possible
to observe the connection between these two problems
at the level of their statements. Unfortunately, this thing
is very little reflected in the literature so far; in addition
to our works, we can give the only such reference [Ko-
rostensky and Gonnet, 2000].

Thus, heuristics methods yield practically highly suc-
cessful results, and this article, along with its proposed
follow-up, primarily concentrates on one of these prob-
lem.

The structure of this paper is outlined as follows. In
Section 2, we provide a motivation for considering such
problems, in particular, its use in some quantum physics
models. In Section 3, we provide a theoretical basis
for our approach. In Section 4, we describe in detail
the method developed for solving the pseudo-geometric
TSP, including the techniques for classifying input data
and pseudo-optimal point placement. Finally, in the con-
clusion (Section 5), we provide a detailed outline for the
proposed continuation.

2 Motivation.
Hamilton cycles in quantum physics models

In this section, we provide a motivation for considering
such problems, in particular, its use in some quantum
physics models.

The “ecological niche” of the geometric version of the
TSP is well-studied, with many approaches to solving
its particular cases, developed over the years, [Gutin
and Punnen, 1997] etc. Some examples of algorithms
belonging to this group are the “onion-peeling” [Sing,
2012] and the “elastic network” [Somhom, 1999] algo-
rithms, which have a relatively low computational com-
plexity and can provide good solutions for special cases
with millions of points that are practically optimal. How-
ever, these algorithms are usually not applicable outside
of the geometric TSP-version, so this article is aimed at
exploring the possibility of applying similar algorithms
to other TSP-versions. Therefore, our goal is to create
a robust heuristic approach to solving pseudo-geometric
TSP using techniques from geometric TSP. By doing so,
we can better understand the complexities of this chal-
lenging optimization problem and gain insight into more
efficient ways to solve it. Additionally, this research can
provide a platform for developing more efficient algo-
rithms in the future.

Mathematical models and algorithms, originally devel-
oped to solve the traveling salesman problem, were also
used to solve other applied problems, such as:

• to build optimal transport routes and select the opti-
mal trajectory;

• for sequencing nucleotide sequences of biopoly-
mers, [Korostensky and Gonnet, 1999];

• for the calculation of string similarity [Melnikov
and Panin, 2012; Makarkin et al., 2013];

• for the development of practical algorithms for
the study of specially defined infinite grammatical
structures [Melnikov, 1996; Melnikov and Kash-
lakova, 2000];

• for the construction of evolutionary trees [Korosten-
sky and Gonnet, 2000].
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In addition, the TSP has been applied for the DNA
analysis; we shall return to this issue in this section. Af-
ter sequencing, a set of small-length strings is obtained,
and an oriented graph is created with weights that repre-
sent the degree of similarity between them. In this set-
ting, the longest common superstring has the maximum
cost. This problem is close to the pseudo-geometric
TSP-version, as the length of overlapping sections can
be arbitrary (within certain boundaries). Thus, there is
potential for further work in this area.

The pseudo-geometric approach can be used to solve
other tasks, such as finding the optimal route for manipu-
lating the state of one or more photons in a quantum sys-
tem. In this approach, the quantum states are represented
by points in a geometric space, [Aharonov et al., 1993]
etc. However, the distance between two states is not
determined by the distance between their correspond-
ing points in the space. Instead, the distance is defined
using a metric that captures the similarity or dissimilar-
ity between the states, [Trugenberger, 2002; Tomilin and
Il’ichov, 2023] etc. For example, the TSP can be used
with points corresponding to different states of photons
and in order to find the optimal route for manipulating
the state of the photons. In addition, it is possible to use
quantum computers for solutions of such problems, with
the usage of technologies such as quantum graph walk-
ing and quantum annealing.

The quantum graph walking (QWG) is a quantum al-
gorithm that uses quantum states to find the shortest path
in a graph, while quantum annealing is used to con-
trol quantum systems through various influences such as
electric and magnetic fields, [Childs et al., 2002; Childs,
2009] etc. By combining quantum graph walking and
quantum annealing, we can solve the traveling salesman
problem in a quantum system. This approach can be
used to find the optimal path of a quantum particle in
quantum mechanics, and then optimize and control the
trajectory using quantum annealing. These techniques
can be used to manipulate the state of photons in a quan-
tum system, [Childs et al., 2002; Sergeenko et al., 2020]
etc., and implement various quantum operations such as
encryption and decryption in quantum cryptography and
measurements in quantum metrology.

Quantum graphs have already been mentioned in the
previous paragraph, but, apparently, the information
given there is sufficient to describe the motivation for
their study within the framework of the problems we are
considering. However, of course, for further presenta-
tion, at least a brief description of the variants of quan-
tum graphs is useful, we shall bring them close to [Freed-
man et al., 2007], and also use some material from the
Internet.

Thus, a quantum graph is a graph in which each edge
is assigned a length and a differential equation is given
on each edge. An important example is an electrical
network consisting of wires (edges) connected in trans-
former substations (vertices). In this case, the differen-
tial equations describe the voltage on the wires, and the

boundary conditions at the vertices provide a zero sum
of current on all incoming and outgoing edges of each
vertex.

In addition to the subject areas we have mentioned,
they have found wide application in other subject areas
related to physics:

• in models of quantum chaos systems;
• in the study of wave guides;
• for modeling photonic crystals;
• in the so-called mesoscopic physics, where quan-

tum graphs are used to theoretically substantiate the
concepts considered there.

In addition to solving differential equations on a quan-
tum graph for specific applications, issues of controlla-
bility are studied (what input effect ensures the transition
of the system to the desired state, for example, to ensure
sufficient electrical power at all substations) and iden-
tification of systems (how and where it is necessary to
measure any value in order to obtain the necessary infor-
mation about the state of the system, for example, pres-
sure measurement in the water supply system to detect
water leakage).

3 The theoretical substantiation
for the application of a heuristic method

Thus, we use the geometric approaches for the pseudo-
geometric TSP. In this section, we provide a theoretical
basis for it.

In the current paper, we propose to use some of the ge-
ometric approaches for solution of the pseudo-geometric
TSP, in which the distance between two points is de-
fined by a function that takes into account both the Eu-
clidean distance between the points and a random vari-
able, which is referred to as the “dispersion”. The dis-
persion represents the degree of randomness or noise in
the problem, and it is used to introduce a level of uncer-
tainty into the problem, which makes it more difficult to
solve.

For the TSP in 2D, we need to reconstruct the noisy
path and estimate the error bound for the total distance.
However, this is an ill-posed problem and even a small
error in the initial data can result in a significant error in
the calculated derivatives. Let us consider a set of points

P = (xi, yi) with i = 1, . . . ,N

in the unit square, where the noisy coordinates are
(xδi , y

δ
i ). Moreover, we assume the following:

max
(
|y(i) − yδ

i |, |x(i) − xδi |
)
⩽ δ,

where δ is a known level of noise or dispersion in the
data. As we know, the TSP requires finding the shortest
closed path that visits each point in P exactly once.

We can represent the true path as a sequence of indices
s = (s1, s2, . . . , sN), where the index si refers to the i-
th point in the true path. This sequence of indices can be
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found by techniques such as nearest neighbors or greedy
algorithms. The noisy path will be given by a sequence
of noisy coordinates (x(si)δ, y(si)

δ). We shall consider
the problem in a piece-wise manner using smoothing cu-
bic splines.

In some applications, considering a smooth path us-
ing splines over nearest neighbor or linear interpolation
can be beneficial for several reasons. Smooth paths are
important when the path is meant to be followed by
a vehicle or a robot, as they ensure feasible and effi-
cient movement without challenging or impossible-to-
navigate sharp turns or discontinuities. Additionally,
spline interpolation can provide a more accurate approx-
imation of the true underlying path by reducing the im-
pact of noise on the final result, whereas linear interpo-
lation may be more sensitive to noise and nearest neigh-
bor interpolation may not even create a continuous path.
Smooth paths also tend to be more visually appealing
and easier to understand when visualizing the TSP re-
sults. Lastly, if the true underlying path is smooth, using
splines can yield a better approximation than linear in-
terpolation or nearest neighbor methods.

To construct a piece-wise cubic spline for the 2D TSP-
path, we can consider a parametric representation of the
path. Let t be the parameter that varies from 0 to 1, with
ti corresponding to the point (xsi

, ysi
).

For each consecutive pair of points (xsi
, ysi

) and
(xsi+1

, ysi+1
), we can define two cubic functions

Xi(t) and Yi(t) for t ∈ [ti, ti+1] ≡ Ωi

in the following way.

Xi(t) =

ax,i + bx,i(t− ti) + cx,i(t− ti)
2 + dx,i(t− ti)

3,

Yi(t) =

ay,i + by,i(t− ti) + cy,i(t− ti)
2 + dy,i(t− ti)

3.

The coefficients ax,i, bx,i, cx,i, dx,i, ay,i, by,i, cy,i,
and dy,i can be determined by imposing the following
conditions.

1. The cubic functions pass through the points:

Xi(ti) = xsi
,

Xi(ti+1) = xsi+1
,

Yi(ti) = ysi
,

Yi(ti+1) = ysi+1
.

2. The first and second derivatives are continuous at
the junctions:

X ′
i(ti+1) = X ′

i+1(ti+1),

X ′′
i (ti+1) = X ′′

i+1(ti+1),

Y ′
i(ti+1) = Y ′

i+1(ti+1),

Y ′′
i (ti+1) = Y ′′

i+1(ti+1).

We denote the sets of piece-wise functions as:

X(t) =


X1(t), for t ∈ [t1, t2],

X2(t), for t ∈ [t2, t3],

. . . ,

XN(t), for t ∈ [tN, tN+1].

and

Y(t) =


Y1(t), for t ∈ [t1, t2],

Y2(t), for t ∈ [t2, t3],

. . . ,

YN(t), for t ∈ [tN, tN+1].

Then we define the functional Φ[X, Y] as follows:

Φ[X, Y] ≡ 1

N
·

N∑
i=1

((
xδsi

− X(ti)
)2

+
(
yδ
si

− Y(ti)
)2)

+ α ·
(∣∣X ′′(t)

∣∣2
L2(Ω)

+
∣∣Y ′′(t)

∣∣2
L2(Ω)

,
)
; (1)

here, the domain Ω is the union of all the segments’ do-
mains, i.e.,

Ω =
N
∪

i=1
Ωi.

Let α be such that the minimizing elements Xα(t) and
Yα(t) of Φ[X, Y] satisfy:

1

N
·

N∑
i=1

((
xδsi

− Xα(ti)
)2

+
(
yδ
si

− Yα(ti)
)2)

= δ2.

We find the minimizing elements Xα(t) and Yα(t) of
Φ[X, Y]:

(Xα(t), Yα(t)) = arg min
X,Y

Φ[X, Y]. (2)

These minimizing cubic spline functions Xα(t) and
Yα(t) will provide the best approximation of the true
path, given the noisy data and the chosen smoothness
parameter α.

The total distance can be approximated as follows:

DTSP ≈
tN∫
t1

√
(X ′

α(t))
2 + (Y ′

α(t))
2 dt .

Remark that we used piece-wise cubic splines.
With the piece-wise cubic spline, it is possible obtain a

smooth approximation of the TSP path, that is less sen-
sitive to the noise in the data points, leading to a more
accurate estimation of the total distance.
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Then according to [Hanke and Scherzer, 2001], the to-
tal error bound for the TSP path can be expressed in the
following way:∥∥(Xα(t), Yα(t)) − (Xsi

(t), Ysi
(t))

∥∥
H1(Ω)

⩽

⩽
√
8
(
h
(
∥X ′′

α(t)∥L2(Ω) + Y ′′
α(t)∥L2(Ω)

)
+

+
√
δ
(
∥X ′′

α(t)∥
1/2

L2(Ω)
+ Y ′′

α(t)∥
1/2

L2(Ω)

))
.

(3)

This error bound depends on the smoothness of the true
path segments and the noisy level δ. If

distanceh = max
1⩽i<n

(
(x(s(i+ 1)) − x(si))

2+

+(y(s(i+ 1)) − y(si))
2
)1/2

and δ are sufficiently small, then the reconstruction error
will be minimal, resulting in an accurate approximation
of the total distance for the TSP.

It is important to note that the error bound provided
here depends on the assumption that we know the cor-
rect order of points in the TSP path. In practice, solv-
ing the TSP involves finding the optimal order of points,
which is a computationally challenging problem. The er-
ror bound given here can be used as an estimate of the er-
ror for the TSP when the correct order of points is known
or assumed.

If we have knowledge of the error bounds, it enables us
to estimate the reconstruction error of the TSP solution,
even when applying geometric approaches to a pseudo-
geometric version of the TSP problem. This means that,
by understanding the limits of our approximation, we
can still achieve reliable results when addressing the TSP
instances that possess inherent geometric properties, de-
spite any uncertainties or noise in the data.

4 Geometric approach:
pseudo-optimum placement of the points

In this section, we describe in detail the method de-
veloped for solving the pseudo-geometric TSP, includ-
ing the techniques for classifying input data and pseudo-
optimal point placement.

The problem of pseudo-recovery the original coordi-
nates of a set of points is more significant than the prob-
lem of classifying them (i.e., determining their class
based on the known cost matrix in the case of the TSP).

Our algorithm for pseudo-recovery involves a simpler
problem: restoring the location of points in a geometric
TSP-version using the distance matrix defined with the
function

c : E → N0. (4)

This problem can be easily solved using the following
method.

• Select two arbitrary points v1 and v2 from the set of
vertices of the graph V .

• Place v1 at the origin, and v2 at the point
(0, c(v1, v2)).

• Find the coordinates of each of the following points
(let it be u with the coordinates (x, y)), choose two
points (let v and w) that have already been placed
and solve the system of equations:{

(x− xv)
2 + (y− yv)

2 = (c(u, v))2

(x− xw)2 + (y− yw)2 = (c(u,w))2.
(5)

However, when this algorithm is applied to the distance
matrix (4) in the pseudo-geometric TSP-version, it gen-
erally does not result in the original location of the points
in the geometric TSP-version. Additionally, due to the
possible violation of the triangle inequality in the given
distance matrix, the algorithm may not be applicable.

As we already said, the main focus of this paper and
its prospective continuation is a modified algorithm pro-
posed by the authors for solving a particular case of the
TSP which involves the use of the above algorithm for
restoring the location of points in the case of a geometric
TSP-version. Additionally, it is worth noting that this al-
gorithm can be applied to any particular case of the TSP,
but its use is hardly advisable in most “random” or dif-
ferent from pseudo-geometric special cases of the TSP.

Thus, despite the fact that the application of algorithms
similar to the above is, generally speaking, impossible
for the pseudo-geometric TSP-version, we are trying the
same algorithms to solve the problem of the location of
cities, actually solving the minimization problem for the
following specially computed discrepancy (“badness”)√√√√ 2

n · (n− 1)
·
n−1∑
i=1

n∑
j=i+1

(
c(ui, uj) − c̃(ui, uj)

)2
,

(6)
where:

• ui (i = 1, . . . , n) are the points; we shall denote
coordinates of the i-th point by (xi, yi);

• c(ui, uj) is the (i, j)-th element of the given cost
matrix;

• c̃(ui, uj) is the (i, j)-th element of the obtained cost
matrix.

Note that in the degenerate case (i.e., when σ = 0), and
when considering an ideal solution, the value 0 for the
badness should be obtained.

As the heuristic algorithm for this problem, the authors
propose the following one. In fact, we are solving the
same minimization problem, not paying attention to the
fact that the points are not located according to a geo-
metric law.
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Algorithm for pseudo-optimal placement of points
Input. Matrix c : E → N0 (the matrix of weights of
edges of a complete weighted graph with vertices V =
u1, . . . , un); the value N ∈ N.
N is the number of selectable pairs from the already al-
located points. These pairs are chosen to accommodate
each new point, starting with the 4-th one.
Step 1. x1 := 0; y1 := 0; x2 := 0; y2 := c(u1, u2).
Step 2. For each point k = 3, . . . , n (we shall also denote
the current k-th point under consideration simply by u),
compute the coordinates (xk, yk) by the way of steps
3–7 below.
Step 3. M := min

( (k−1)·(k−2)
2

, N
)
.

Step 4. For each value l = 1, . . . ,M, implement steps 5
and 6 below.
Step 5. Randomly select uniformly distributed values
i, j ∈ { 1, . . . , k− 1 }, where i ̸= j. We shall also de-
note the i-th point by v, and the j-th point by w, and,
additionally, denote c1 = c(u, v), c2 = c(u,w).
Step 6. If c1 + c2 ≤ c(v,w) (i.e., for the points u, v and
w, the triangle inequality is violated), then we select

xu =
c1xw + c2xv

c1 + c2
, yu =

c1yw + c2yv

c1 + c2
.

In the event of a degenerate situation, where both c1 and
c2 are equal to 0, the coordinates of the point are chosen
to be in the middle of the segment between v and w. The
coordinates are selected proportionally to the elements
of the cost matrix.

However, if c1 + c2 > c(v,w) (this option can be
called a natural one), then two variants of pairs xk and
yk are calculated according to equation (5). If k = 3,
an arbitrary pair of coordinates is selected, otherwise, a
pair is chosen according to one randomly chosen point
among the numbers 1, . . . , k−1, that are not i and j. The
selected pair of coordinates is added to the collection of
pairs.
Step 7. Calculate the final values xk and yk as the arith-
metic mean of the values l of the corresponding coordi-
nates of the generated collection.
Output. Coordinates (x1, y1), . . . , (xn, yn).
End of the algorithm description.

The goal of the above-mentioned algorithm is to ap-
ply a simple method of searching through all possible
solutions, by sequentially placing the points u1, . . . , un

while minimizing the value

k−2∑
i=1

k−1∑
j=i+1

(
c(ui, uj) − c̃(ui, uj)

)2
,

included in equation (6). Once all the points have been
placed, standard methods for solving the geometric TSP
version are used (such as the “onion-peeling” algorithm),
as explained in more detail in [Melnikov, 2001].

5 Conclusion
In this section, we provide a detailed outline of the pro-

posed continuation paper.
Despite the frequent use of the the “onion-peeling” al-

gorithm, including as an auxiliary in other algorithms,
the authors have not been able to find specific references
(aside from the one mentioned above [Sing, 2012]).
Consequently, in the follow-up article, we shall thor-
oughly describe a particular version of this algorithm
that we use, which, as suggested by the content of this
paper, will also be utilized by us as an auxiliary.

We shall present the results of numerical experiments
using our method and summarize the results. As con-
crete results of computational experiments, we are go-
ing to cite the following. Firstly, for the “onion-peeling”
algorithm we describe, we shall count the number of
its layers, when the number of points (cities) changes
from 30 to 10 million (in increments of about 3 times).
Further, for “normal” dimensions (those where it makes
sense to consider the pseudo-geometric TSP, i.e. no
more than 100), we consider the values of badness for
three variants of pseudo-placement of points:

• a simple algorithm (we randomly select several
pairs, and the new point is the first one that comes
along);

• a complicated algorithm (we choose the new point
farthest from the middle of the already selected
ones);

• a most complex algorithm (by setting a new point,
we correct the previous ones according to it: ran-
domly select 3 of the previous ones and recalcu-
late their coordinates, and with such a recalculation,
with a probability of about 1/3 of one of the points
of the pair, we select this new point).

More important, however, are the following calculated
values (we repeat that they will considered also for dif-
ferent “natural” dimensions):

• we calculate the badness using the usual “onion-
peeling” algorithm; with the value σ = 0, the ob-
tained value should be exactly 0; in general, we
average the “percentages” of deterioration here and
below;

• we calculate the badness by making the placement
using a location known to us in advance, i.e., found
“by the onion-peeling” for the original (not pseudo-
geometric) matrix;

• we calculate the badness by making our placement;
we make it without knowing the location of the
found “onion-peeling” for the original (not pseudo-
geometric) matrix.

Let us also repeat one of the directions of further work,
already briefly described in Introduction. The connec-
tion of two mentioned problems (the pseudo-geometric
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version of the TSP and the restoration of the DNA ma-
trix) was already noted at the level of solution algo-
rithms. However, it is possible to observe the connection
between two mentioned problems at the level of their
statements. Unfortunately, this thing is very little re-
flected in the literature so far; we are going to consider
such a connection in future publications.
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