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Abstract
The notion of phase and phase synchronization in

time-delay systems are not well understood despite of
our substantial understanding of these phenomena in
non-delay (low-dimensional) systems. We will discuss
briefly the drawbacks in estimating phase in time-delay
systems usually exhibiting highly non-phase-coherent
hyperchaotic attractors with complex topological prop-
erties. We will provide a brief note on the different
approaches that we have used in estimating phase and
subsequently identifying chaotic phase synchroniza-
tion in coupled time-delay systems. Further, we will
demonstrate the existence of chaotic phase synchro-
nization in paradigmatic models such as a piecewise
linear time-delay systems and Mackey-Glass systems
numerically and experimentally in time-delay elec-
tronic circuits with a threshold nonlinearity.
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1 Introduction
Synchronization of chaotic systems driven by com-

mon signals have been an area of extensive re-
search since the pioneering works of Fujisaka and Ya-
mada [Fujisaka and Yamada (1983)] and of Pecora
and Carroll [Pecora and Carroll, 1990]. Since the
identification of complete (identical) chaotic synchro-
nization, different kinds of chaotic synchronizations
have been identified and demonstrated both theoret-
ically and experimentally (cf. [Pikovsky, Rosenblum
and Kurths, 2001; Boccaletti, Kurths, Osipov, Val-
ladares and Zhou, (2002); Lakshmanan and Senthilku-
mar, (2010)]). Recently, synchronization in coupled
time-delay systems with or without time-delay cou-
pling has become an active area of research by ex-
ploiting the infinite dimensional nature of the underly-
ing systems, which exhibits a large number of positive
Lyapunov exponents as a function of the delay time,

for potential applications [Shahverdiev, Sivaprakasam
and Shore, (2002); Boccaletti, Pecora and Pelaez,
(2001); Cuomo and Oppenheim (1993); Hayes, Gre-
bogy, Ott and Mark, (1994); Garcia-Ojalvo and Roy,
(2001); VanWiggeren and Roy, (2002); Senthilku-
mar, Lakshmanan and Kurths, (2006); Senthilkumar,
Lakshmanan and Kurths, (2007); Senthilkumar, Lak-
shmanan and Kurths, (2008); Senthilkumar, Kurths
and Lakshmanan, (2009); Suresh, Senthilkumar, Lak-
shmanan and Kurths, (2010); Senthilkumar, Srini-
vasan, Murali, Lakshmanan and Kurths, (2010); Srini-
vasan, Senthilkumar, Murali, Lakshmanan and Kurths,
(2011)].
Among the different kinds of synchronization, chaotic

phase synchronization (CPS) refers to the coincidence
of characteristic time scales of interacting chaotic dy-
namical systems, while their amplitudes remain chaotic
and often uncorrelated [Pikovsky, Rosenblum and
Kurths, 2001; Boccaletti, Kurths, Osipov, Valladares
and Zhou, (2002)]. CPS plays a crucial role in un-
derstanding a large class of weakly interacting non-
linear dynamical systems and has been demonstrated
both theoretically and experimentally in a wide variety
of natural systems [Pikovsky, Rosenblum and Kurths,
2001; Boccaletti, Kurths, Osipov, Valladares and Zhou,
(2002)]. Despite our substantial understanding of the
phenomenon of CPS and its potential applications in
low-dimensional systems, only a very few studies on it
have been reported in time-delayed systems, which are
essentially infinite-dimensional in nature [Senthilku-
mar, Lakshmanan and Kurths, (2006); Senthilkumar,
Lakshmanan and Kurths, (2007); Senthilkumar, Laksh-
manan and Kurths, (2008); Senthilkumar, Kurths and
Lakshmanan, (2009); Suresh, Senthilkumar, Laksh-
manan and Kurths, (2010); Srinivasan, Senthilkumar,
Murali, Lakshmanan and Kurths, (2011)]. Due to the
highly non-phase-coherent chaotic/hyperchaotic attrac-
tors with complex topological properties exhibited by
these systems in general, it is often impossible to esti-
mate the phase explicitly and to identify CPS in time-
delay systems.
Nevertheless, we have introduced a nonlinear trans-



formation to recast the original non-phase-coherent
attractors into smeared limit-cycle attractors to en-
able to estimate the phase explicitly and to iden-
tify CPS in time-delay model systems for the first
time in the literature [Senthilkumar, Lakshmanan
and Kurths, (2006)]. This study has initiated fur-
ther investigations in identifying and understanding
the mechanism of phase synchronization transition
in coupled time-delay systems [Senthilkumar, Lak-
shmanan and Kurths, (2006); Senthilkumar, Laksh-
manan and Kurths, (2007); Senthilkumar, Lakshmanan
and Kurths, (2008); Senthilkumar, Kurths and Lak-
shmanan, (2009); Suresh, Senthilkumar, Lakshmanan
and Kurths, (2010); Srinivasan, Senthilkumar, Mu-
rali, Lakshmanan and Kurths, (2011)]. In particular,
phase synchronization in an array of time-delay sys-
tems along with their mechanism of transition to global
phase synchronization has been reported [Suresh,
Senthilkumar, Lakshmanan and Kurths, (2010)], first
experimental demonstration of phase synchronization
in coupled time-delay systems with threshold non-
linearity has also been reported [Senthilkumar, Srini-
vasan, Murali, Lakshmanan and Kurths, (2010)].
In this paper, we provide a brief review of our impor-

tant results on phase synchronization in coupled time-
delay systems including an experimental confirmation
using electronic circuits. The plan of the paper is as
follows. In Sec. 2, we provide a brief note on the es-
timates of phase that we have applied for time-delay
systems in estimating phase and subsequently identi-
fying chaotic phase synchronization. We demonstrate
the existence of CPS in paradigmatic models such as a
piecewise linear time-delay systems and Mackey-Glass
systems numerically and experimentally in a piecewise
linear time-delay systems with a threshold nonlinearity
in Sec. 3 and endup with summary and conclusion in
Sec. 4.

2 Estimates of phase applied for time-delay sys-
tems

We usually encounter with the terminologies phase-
coherent and non-phase-coherent chaotic attractors
while studying CPS. If the flow of a dynamical system
has a proper rotation around a fixed reference point,
then the corresponding attractor is termed as phase-
coherent attractor. In contrast, if the flow does not
have a proper rotation around a fixed reference point
then the corresponding attractor is called as non-phase-
coherent attractor. While methods have been well es-
tablished in the literature to identify phase and to study
CPS in phase-coherent chaotic attractors, methods to
identify phase of non-phase-coherent chaotic attractors
have not yet been well established. Even the most
promising approach available in the literature to cal-
culate the phase of non-phase-coherent attractors is
based on the concept of curvature [Osipov, Hu, Zhou,
Ivanchenko and Kurths, (2003)], but this is often re-
stricted to low-dimensional systems. However, we find

that this procedure does not work in the case of nonlin-
ear time-delay systems in general, where very often the
attractor is non-phase-coherent and high-dimensional.
Unfortunately methods to identify phase and to study
CPS in time-delay systems, which often exhibit highly
complicated hyperchaotic attractors, have not yet been
well understood. Hence defining and estimating phase
from the hyperchaotic attractors of the time-delay sys-
tems itself is a challenging task and so specialized tech-
niques/tools have to be identified to introduce the no-
tion of phase in such systems. In the following, we
account briefly on the different measures that we have
employed in identifying CPS in coupled time-delay
systems.

2.1 Transformation of the original attractor
We have introduced a nonlinear transformation to

rescale the original non-phase-coherent chaotic attrac-
tor into smeared limit cycle like attractor with a single
center of rotation. The transformation is performed by
introducing a new state variable [Senthilkumar, Laksh-
manan and Kurths, (2006); Senthilkumar, Kurths and
Lakshmanan, (2009)],

z(t + τ) = x(t)x(t + τ̂)/x(t + τ), (1)

whereτ̂ is the optimal value of time delay to be cho-
sen in order to avoid any additional center of rotation.
This functional form of the transformation (along with
a delay timêτ ) has been identified by generalizing the
transformation used in the case of chaotic attractors in
the Lorenz systems [Pikovsky, Rosenblum and Kurths,
2001]. Now, the projected trajectory in the new state
space (x(t + τ), z(t + τ)) will results in a smeared
limit cycle like attractor with a single fixed center of
rotation. Conventional approaches for estimating phase
of phase-coherent attractors can now be applied to the
transformed attractor in the new state space to estimate
the phase explicitly and to identify CPS in time-delay
systems with non-phase-coherent attractors. The other
estimates that we have employed to identify CPS does
not involve estimation of the phase explicitly but in-
stead provides a qualitative and quantitative confirma-
tion of existence of CPS.
It is to be noted that the above transformation (1) can

be applied to the non-phase-coherent attractors of any
time-delay system in general, except for the fact that
the optimal value of̂τ should be chosen for each sys-
tem appropriately through trial and error by requiring
the geometrical structure of the transformed attractor
to have a fixed center of rotation. We have adopted
here a geometric approach for the selection ofτ̂ and
look for an optimum transform which leads to a phase-
coherent structure. This is indeed demonstrated for the
attractor of piece-wise linear and Mackey-Glass time-
delay systems in the next section [Senthilkumar, Lak-
shmanan and Kurths, (2006); Senthilkumar, Kurths and
Lakshmanan, (2009)]. The main point that we want



to emphasize here is that even for highly non-phase-
coherent hyperchaotic attractors of time-delay systems,
there is every possibility to identify suitable transfor-
mations of the type (1) to unfold the attractor and to
identify phase as will demonstrate for two paradigmatic
time-delay systems. However, formulating a more gen-
eralized transformation to include non-phase-coherent
attractors of a large class of time-delay systems remains
an open problem.

2.2 Recurrence measures
The complex synchronization phenomena in the cou-

pled time-delay systems can also be analyzed by means
of methods based on recurrence plots [Romano, Thiel,
Kurths, Kiss and Hudson, (2005); Marwan, Romano,
Thiel and Kurths, J (2007)]. These methods help to
identify and quantify CPS particularly in non-phase co-
herent attractors. For this purpose, the generalized au-
tocorrelation functionP (t) has been introduced in [Ro-
mano, Thiel, Kurths, Kiss and Hudson, (2005); Mar-
wan, Romano, Thiel and Kurths, J (2007)] as

P (t) =
1

N − t

N−t
∑

i=1

Θ(ǫ − ||Xi − Xi+t||), (2)

whereΘ is the Heaviside function,Xi is the ith data
corresponding to either the drive variable or the re-
sponse variable andǫ is a predefined threshold.||.|| is
the Euclidean norm andN is the number of data points.
P (t) can be considered as a statistical measure about
how oftenφ has increased by2π or multiples of2π
within the timet in the original space. If two systems
are in CPS, their phases increase on average byK.2π,
whereK is a natural number, within the same time in-
terval t. The value ofK corresponds to the number of
cycles when||X(t + T ) − X(t)|| ∼ 0, or equivalently
when||X(t + T ) − X(t)|| < ǫ, whereT is the period
of the system. Hence, looking at the coincidence of the
positions of the maxima ofP (t) for both systems, one
can qualitatively identify CPS.
A criterion to quantify CPS is the cross correlation

coefficient between the drive,P1(t), and the response,
P2(t), which can be defined as Correlation of Probabil-
ity of Recurrence (CPR)

CPR = 〈P̄1(t)P̄2(t)〉/σ1σ2, (3)

whereP̄1,2 means that the mean value has been sub-
tracted andσ1,2 are the standard deviations ofP1(t)
andP2(t) respectively. If both systems are in CPS, the
probability of recurrence is maximal at the same time
t and CPR≈ 1. If they are not in CPS, the maxima
do not occur simultaneously and hence one can expect
a drift in both the probability of recurrences and low
values of CPR.
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Figure 1. (a) The non-phase coherent hyperchaotic attractor of the

uncoupled piecewise linear time-delay system for the parameter val-

uesa = 1.0, b = 1.2 and τ = 15. and (b) Transformed

attractor in thex1(t + τ) andz(t + τ) space. Here the Poincaré

points are represented as open circles.

2.3 Concept of Localized sets

Another interesting framework to identify CPS is the
concept of localized sets [Pereira, Baptista and Kurths,
(2007)]. This approach provides an easy and effi-
cient way to detect CPS especially in complicated non-
phase-coherent attractors. The basic idea of this con-
cept is to define a typical event in one of the systems
and then observe the other system whenever this event
occurs. These observations give raise to a setD. De-
pending upon the property of this setD, one can state
whether PS exists or not. The coupled systems evolve
independently if the sets obtained by observing the cor-
responding events in the systems spread over the attrac-
tor of the systems. On the other hand, if the sets are lo-
calized on the attractors then CPS exists between them.

2.4 Lyapunov exponents

Transition of zero Lyapunov exponent of the response
system to negative values is used to characterize the
onset of phase synchronization in the low-dimensional
systems. Chaotic phase synchronization in time-delay
systems can also be characterized by the transitions in
the Lyapunov exponents of the coupled time-delay sys-
tems [Senthilkumar, Lakshmanan and Kurths, (2006);
Senthilkumar, Kurths and Lakshmanan, (2009)].

3 CPS in coupled time-delay systems

We consider the following unidirectionally coupled
drivex1(t) and responsex2(t) systems,

ẋ1(t) = −ax1(t) + b1f(x1(t − τ)), (4a)

ẋ2(t) = −ax2(t) + b2f(x2(t − τ))

+b3f(x1(t − τ)), (4b)

whereb1, b2 andb3 are constants,a > 0, τ is the de-
lay time andf(x) is an appropriate nonlinear function.
Now we will demonstrate the existence of CPS in three
different protype time-delay systems.
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Figure 2. Phase differences (∆φ = φz
1(t) − φz

2(t)) between

the coupled piecewise linear time-delay systems for different values

of the coupling strengthb3 = 0.0, 1.0, 1.3, 1.4 and1.5.

3.1 CPS in coupled piecewise linear time-delay
systems

The nonlinear functionf(x) in the above coupled
time-delay systems corresponding to the piecewise lin-
ear time-delay systems is an odd piecewise linear func-
tion defined as

f(x) =























0, x ≤ −4/3
−1.5x − 2, −4/3 < x ≤ −0.8

x, −0.8 < x ≤ 0.8
−1.5x + 2, 0.8 < x ≤ 4/3

0, x > 4/3

(5)

We have chosen the value of the parameters asa =
1.0, b1 = 1.2, b2 = 1.1 and τ = 15. For this para-
metric choice, in the absence of coupling, the drive
x1(t) and the responsex2(t) systems evolve indepen-
dently, which exhibit hyperchaotic attractors (Fig. 1)
for the chosen parameter values [Senthilkumar, Laksh-
manan and Kurths, (2006)]. The original and the trans-
formed hyperchaotic attractors of the piecewise linear
time-delay system are shown in Fig. 1(a) and (b), re-
spectively. Open circles in Fig. 1(b) correspond to the
Poincaŕe points of the smeared limit-cycle-like attrac-
tor. We find the optimal value of̂τ for the transforma-
tion specified by Eq. (1) for the attractor (Fig. 1(a)) of
the piecewise linear time-delay system to be1.6. It is to
be noted that on closer examination of the transformed
attractor (Fig. 1(b)) in the vicinity of the common cen-
ter, it does not have any closed loop, unlike the case of
the original attractor, even though the trajectories show
sharp turns in some regime of the phase space.
Now, the phase of the transformed attractor can

be defined based on the Poincaré section tech-
nique [Pikovsky, Rosenblum and Kurths, 2001].
Phases,φz

1(t) andφz
2(t), of the drivex1(t) and the re-

sponsex2(t) systems, respectively, are calculated from
the state variablesz1(t + τ) andz2(t + τ). The phase
differences (∆φ = φz

1(t) − φz
2(t)) between the drive

and the response systems are shown in Fig. 2 for dif-
ferent values of the coupling strengthb3. The phase
difference∆φ between the coupled piecewise linear
time-delay systems forb3 = 0.0 (uncoupled) increases
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Figure 3. (a) The non-phase coherent chaotic attractor of the

Mackey-Glass time-delay system for the parameter valuesa =
0.1, b1 = 0.2 andτ = 20 and (b) Transformed attractor in

thex1(t + τ) andz(t + τ) space along with the Poincaré points

represented as open circles.

monotonically as a function of time confirming that
both systems are in an asynchronous state (also non-
identical) in the absence of coupling between them. For
the values ofb3 = 1.0 and1.3, the phase slips in the
corresponding phase difference∆φ show that the sys-
tems are in a transition state. The strong boundedness
of the phase difference is obtained forb3 > 1.382 and
it becomes zero for the value of the coupling strength
b3 = 1.5, showing a high quality CPS [Senthilkumar,
Lakshmanan and Kurths, (2006)].

3.2 CPS in coupled Mackey-Glass time-delay sys-
tems

The nonlinear functionf(x) in the coupled time-delay
systems, Eq. (4), corresponding to the Mackey-Glass
time-delay systems is represented as

f(x) = x(t − τ)/(1.0 + x(t − τ)10). (6)

We have chosen the parameter values asa = 0.1, b1 =
0.2, b2 = 0.205 andτ = 20. The non-phase-coherent
chaotic attractor of the uncoupled Mackey-Glass sys-
tem for the above choice of parameters is shown in
Fig. 3(a). The transformed attractor, for the optimal
value of the delay timêτ = 8.0 in Eq. (1), is depicted
in Fig. 3(b). The Poincaré points are shown as open
circles in the Fig. 3(b) from which the instantaneous
phaseφz

1(t) is calculated using the Poincaré section
technique. The phase differences∆φ = φz

1(t) − φz
2(t)

between the coupled Mackey-Glass systems for the val-
ues of the coupling strengthb3 = 0.04, 0.08, 0.11, 0.12
and0.3 are shown in Fig. 4. For the value of the cou-
pling strengthb3 = 0.3, there exists a strong bounded-
ness in the phase difference indicating the existence of
CPS [Senthilkumar, Lakshmanan and Kurths, (2007)].
The existence of CPS is also confirmed from the

original non-transformed attractors of the coupled
systems using the recurrence quantification mea-
sures, Lyapunov exponents and the concept of Lo-
calized sets [Lakshmanan and Senthilkumar, (2010);
Senthilkumar, Lakshmanan and Kurths, (2006);
Senthilkumar, Lakshmanan and Kurths, (2007)]. Fur-
ther, the existence of CPS in coupled Ikeda systems ex-
hibiting more complex hyperchaotic attractors is also
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demonstrated [Senthilkumar, Lakshmanan and Kurths,
(2008)].

3.3 Experimental confirmation of CPS
In this section, we will discuss briefly the experi-

mental results on CPS in coupled time-delay systems
with threshold nonlinearity. The details of circuit
and its parameter values can be seen in Ref. [Srini-
vasan, Senthilkumar, Murali, Lakshmanan and Kurths,
(2011); Srinivasan, Senthilkumar, Murali, Lakshmanan
and Kurths, (2011)]. The normalized coupled equation
is identical to the Eqs. (4) with the following form of
threshold nonlinearity

f(x) = Af∗ − Bx. (7a)

Here

f∗ =







−x∗ x < −x∗,
x −x∗ ≤ x ≤ x∗,
x∗ x > x∗,

(7b)

wherex∗ is a controllable threshold value. The es-
timated normalized values turn out to bex∗ = 0.7,
A = 5.2, B = 3.5, b1 = 1.2 and b2 = 1.1 in ac-
cordance with the values of the circuit elements. In the
following, we will demonstrate the existence of CPS as
a function of the coupling strengthε in both chaotic and
hyperchaotic regimes for suitable values of the delay
time τ . The snapshots of the time series of both drive
and response systems as seen from the oscilloscope are
shown in Fig. 5(a) in the chaotic regime for the delay
time τ = 1.33 and the coupling strengthε = 0.9, indi-
cating the evolution of both systems in-phase with each
other. Similarly, the snapshots of the time series evolv-
ing in-phase with each other in the hyperchaotic regime
for the delay timeτ = 6.0 are shown in Fig. 5(b) for
ε = 0.7.
The existence of CPS is further characterized ex-

perimentally by using the framework of localized
sets [Pereira, Baptista and Kurths, (2007)]. The sets

Figure 5. (color online) Snapshots of the time evolution of both

coupled systems indicating the existence of CPS in (a) chaotic regime

and (b) hyperchaotic regime.

Figure 6. (color online) Experimental characterization of CPS us-

ing the framework of localized sets in the chaotic regime (i) for

τ = 1.33 and in the hyperchaotic regime (ii) forτ = 6.0. Sets in

the drive and the response systems are distributed in (a) and (b) for

ε = 0.3 indicating the asynchronous state and localized in (c) and

(d) for ε = 0.9 indicating CPS, respectively.

obtained by sampling the time series of one of the sys-
tems whenever a maximum occurs in the other one are
plotted along with the chaotic attractor of the same
system for the delay timeτ = 1.33 in Fig. 6. The
sets distributed over the entire attractor of both the
drive (Fig. 6(a)i) and the response (Fig. 6(b)i) systems
for the coupling strengthε = 0.3 indicate that the
time-delay systems evolve independently. The sets that
are localized on the chaotic attractor of both the drive
(Fig. 6(c)i) and the response (Fig. 6(d)i) systems for
the coupling strengthε = 0.9 correspond to a perfect
locking of the phases of both systems.
For rather smallε, the sets spread over the entire hy-

perchaotic attractors, forτ = 6.0, of the drive and the
response systems as shown in Figs. 6(a)ii and 6(b)ii,
respectively, forε = 0.3, which confirm that both
systems evolve independently. On the other hand, for
ε = 0.9, the observed sets that are localized on the at-
tractors of the drive and the response systems as shown
in Figs. 6(c)ii and 6(d)ii respectively, indeed confirm
the existence of CPS in the hyperchaotic regime.

4 Conclusion
We have identified and characterized the existence

of CPS in prototype time-delay systems such as a
piecewise-linear time-delay system, the Mackey-Glass
and experimentally in a piecewise-linear time-delay



with threshold nonlinearity possessing highly non-
phase-coherent chaotic attractors. We have shown that
there is a typical transition from a non-synchronized
state to CPS from the phase differences estimated from
the transformed variables of the coupled systems us-
ing the nonlinear transformation. The existence of CPS
is observed experimentally from snapshots of the time
evolution of both the coupled systems and is confirmed
with the framework of localized sets.
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