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Abstract
A novel robust control law is investigated on the prob-

lem of ship stabilization on the trajectory, which al-
lows compensating perturbations in the parameters of
the mathematical model of ship dynamics in cases of
their changes caused by external conditions, namely: sea
waves, currents, wind gusts, etc. To implement the pro-
posed control law, only measured adjustable values are
required such as the yaw angle and the control action
that is the angle of the rudder of the ship. The syn-
thesized ship course control system was investigated in
the MATLAB. The law of controlling the ship’s course
with unknown parameters and external disturbances in
the power supply is proposed. The design of the con-
trol law is based on a robust auxiliary loop algorithm
and Khalil observers. The simulations illustrate the effi-
ciency of the proposed control law.

Key words
Robust control, ship’s course, auxiliary loop method,

disturbance, Khalil observers.

1 Introduction
The ship’s course control law experiences the disturb-

ing effects of sea waves, currents and wind gusts. To
effectively solve the problem of keeping the ship on a
given trajectory, it is necessary to create a control law
that would ensure the system’s operability, compensat-
ing for the influence of disturbances, as well as param-
eter disturbances in cases of changes in the dynamic
model of the ship caused by external conditions. Vari-
ous approaches to the synthesis of the control law using
various mathematical models are used to describe the dy-
namic processes and perturbations inherent in the ship
[Gyoungwoo, Surendran and Sang-hyun, 2009]. Reten-
tion on a given trajectory using a PID controller based
on neural networks is carried out in [Zeyu, Jiangqiang

and Xingxing, 2012]. Such PID controllers in a num-
ber of developments provide the simplest parametric ad-
justment using a simplified model of angular motion
[Lokukaluge, Guedes, 2013]. But the control laws based
on a simplified model of angular motion do not take into
account the wind drift of the ship, which can be signifi-
cant. An adequate description of the real situation can be
obtained using such models that take into account exter-
nal disturbances of the water and air environments. Tak-
ing into account the moment of the impact of the wind,
the angle of inclination of the wave, noise, as well as
measurement errors, allow us to build a mathematical
model of the ship, the parameters of which vary within
certain limits [Dmitriev, Pelevin, 2004]. Thus, there is a
need for a reliable control law. In addition, as noted in
[Dmitriev, Pelevin, 2004], the PID controller generates a
high-frequency nature of the control signal, which leads
to increased wear of the steering drive.

Many methods of disturbance compensation for var-
ious control plants are proposed, for example, [Furtat,
Orlov, 2020], [Furtat, 2013], [Morgun, Furtat, 2015].
Survey works on the history of development and the state
of theoretical methods for constructing disturbance ob-
servers, as well as on their practical application, are [An-
drievsky, Furtat, 2020a, 2020b].

One of the effective approaches that takes into account
the uncertainty of the model parameters and the pres-
ence of disturbing factors caused by external conditions
is robust control, proposed in [Tsykunov, Imangazieva,
2007]. The SISO system is developed by introducing
an auxiliary loop and using observers of the system’s de-
rived signals. This article offers a solution to the problem
of keeping a ship on a given trajectory under conditions
of uncertainty, the action of external disturbances using
this control algorithm. The mathematical model of the
ship takes into account external disturbances: the mo-
ment of the impact of the wind, the angle of inclination
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of the wave, independent, generating white noise; mea-
surement errors, as well as kinematic relations. The mo-
tion of the ship in the horizontal plane is considered, tak-
ing into account the lateral deviation from the trajectory.
A reliable law for controlling the ship’s course is con-
structed using the method of auxiliary loop [Tsykunov,
2007] and two Khalil observers [Atassi, Khalil, 1999].

2 Robust control system with compensation of dis-
turbances for a nonlinear plant

Consider a plant model in the form

Q(p)y(t) = kR(p)u(t)+

n∑
i=1

q∑
j=1

pn−iϕij(y(t))τj+f(t),

(1)
where y(t), u(t) is a scalar adjustable variable and con-
trol, p = d/dt is the differentiation operator, f(t) is the
disturbance, Q(p), R(p) are normalized differential op-
erators, degQ(p) = n, degR(p) = m, k > 0, ϕij(y(t)),
i = 1, n, j = 1, q are smooth functions satisfying the
Lipschitz condition, τj are unknown constants.

The equation of the reference model is given

Qmym(t) = kmr(t), (2)

where r(t) is a setting influence, k > 0, ym(t) is a scalar
output, deg Qm(t) = n−m.

The proposed control law should ensure fulfillment of
the goal

| y(t)− ym(t) |< δ (3)

where δ > 0 is a required accuracy.
Assumptions.

1. Coefficients of the polynomials Q(p), R(p), param-
eters k, τj belong to a known compact set Ξ.

2. ϕij(y(t)), i = 1, n, j = 1, q are smooth functions
satisfying the Lipschitz condition.

3. f(t), r(t) is bounded functions.
4. R(λ), Qm(λ) are Hurwitz polinomials, where λ is

complex variable.
5. The orders of polinomials Q(p), R(p) are known,

degQ(p) = n, deg R(p) = m.

Applying the control law proposed in the paper
[Imangazieva, Tsykunov, 2007] we have the following
closed system

Control plant:

Q(p)y(t) = kR(p)u(t) +
n∑
i=1

q∑
j=1

pn−iϕij(y(t))τj + f(t).

Control low: u(t) = Tς, T = [l0, l1, ..., ln−m−1],

T (λ)/Qm(λ) = 1/(1 + λ).

Observer 1: ς̇ = F0ς(t) +B0(v(t)− v(t)),

v(t)) = Lς(t), ς ∈ Rn−m, F0 − frobenius matrix,
L = [1, 0, ...0], BT0 = [b1/µ, ..., bn−m/µ

n−m],

F = F0 +BL− hurwitz matrix, BT = [b1, ..., bn−m].

Auxiliary loop: (p+ am)e(t) = βv(t), ζ(t) = e(t)− e(t).
Observer 2: ż(t) = F0z(t) +B0(ζ(t)− ζ(t)),

ζ(t) = L2z(t), z ∈ R2, F 0 − frobenius matrix,

L2 = [1, 0], B
T

0 = [b1/µ, b2/µ
2], v(t) = − 1

β cz, c = [am, 1].

3 Plant model and Problem statement
Papers [Dmitriev, Pelevin, 2004] provide a complete

system of equations used in solving the problem of sta-
bilizing a ship on a trajectory and including equations
of ship dynamics, external disturbances and errors of
change, as well as kinematic relations. The movement
of the ship in the horizontal plane is considered, tak-
ing into account the side swing. Mathematical model of
plant represents its description in space of states in the
form of nonlinear matrix differential equation [Dmitriev,
Pelevin, 2004]

Ẋ = FX + P (X)X + CU +GW, (4)

where F is a matrix of dynamic, P (X)X is a vector
nonlinear members, C is a matrix of control,W is the
unit intensity vector white noise process, G is a matrix
of perturbations.

State vector X = (Vy, ωz, η(t), ψ, f,m):
Vy is a lateral relative velocity;
ωz is a yaw angular velocity;
η is a lateral deviation from trajectory;
ψ is a yaw angle;
f is a reduced force;
m is a moment of wind impact.

Perturbation vector: W = (w1, w2, αp, α̇p), where
w1, w2 are independent components, generating white
noise of unit intensity, yaw angle of wave slope, model
of which will be described in section 3.1.

Control: u = δ is the steering angle.
Output of the plant: y = K is the ship’s course angle.
Output of reference model: ym = P is the set course

angle.
Controlled variable: e(t) = ψ(t) = y − ym is the yaw

angle.
Also in paper matrix, including in equation (3), for a

three-point lateral wave:

F =


−0, 045 −3, 44 0 0 0 0
0, 006 −0, 346 0 0 0 0

1 0 0 4, 8 0 0
0 1 0 0 0 0
0 0 0 0 −0, 0003 0
0 0 0 0 0 −0, 0003

 ,

G =


0, 0012 0 0 0

0 0, 0001 0 0
0 0 0 0
0 0 0 0
0 0 0, 000061 0
0 0 0 0, 00004

 ,
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P (X) =


0, 02|Vy| 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

C =


−0, 175

0, 25
y 0
0
0
0

 .

Then equation (4) in the operator form gives a descrip-
tion of the plant by the form input-output:

p6 + 0, 3916p5− 0, 00483531p4− 0, 300681 · 10−5p3−
− 0, 4563 · 10−9p2)y(t) = (0, 025p4 + 0, 00219p3+

+ 0, 130725 · 10−5p2 + 0, 19575 · 10−9p)u(t)+

+(0, 012p5+0, 0004p4)(x1−y1)+(−0, 344·10−3 ·p4−
− 0, 2 · 10−6p3)(x2 − y2) + 0, 61 · 10−4·4 +

+ 0, 2112 · 10−4p3 + 0, 1 · 10−7p2)w1(t)+

+ (−0, 1376 · 10−3p3)w2(t) + 0, 02cVycp5,
(5)

where according Assumptions
Q(p) = p6 + 0, 3916p5−0, 00483531p4− 0, 300681 ·

10−5p3 − 0, 4563 · 10−9p2),
R(p) = 0, 025p4 + 0, 00219p3 + 0, 130725 ·10−5p2 +

0, 19575 · 10−9p.
Target condition (3) has the form

| ψ(t) |< δ (6)

starting from a certain moment of time T , where δ is
required accuracy.

For the ship plant, the yaw angle ψ in the horizontal
plane is stabilized, taking into account the lateral devia-
tion η.

3.1 Perturbations model
The force and moment of the wave action are expressed

in terms of the angle of the wave slope αp. Adequate
model of the real situation can be obtained by describ-
ing the angle of the wave slope as follows [Dmitriev,
Pelevin, 2004]
αp = x1 − y1, α̇p = x2 − y2,

where xi, yi, i = 1, 2 described by a system of differen-
tial equations

ẋ1 = x2,

ẋ2 = −a1x2 − a2x1 + cxw4,

ẏ1 = y2,

ẏ2 = −b1y2 − b2y1 + b2x1 + b1x2,

(7)

where a1 = 0.6ωâê, a2 = 1.1ω2
âê
,b1 =

√
2ωâê,

b2 = ω2
âê
, cx =

h3%ω
2
â

5.3g · ωâê ·
√
ωâê. Here ωâ is

a frequency of excitement, ωâê is a frequency of
apparent excitement, h3% is a wave height of 3%
of security, h is a acceleration of gravity. It should
be noted that ωâê = 2π

Tν
frequency corresponding to

the period Tν = 1.086T , where Tν is a characteristic
value of the wave period, taken when visually
assessing the degree of excitement in points, T is an
average wave period [Borodai, Netsvetaev, 1982].

For a three-point wave [Dmitriev, Pelevin, 2004] the
system of differential equations (6) describing the angle
of the wave slope
αp will take the
ẋ1 = x2
ẋ2 = −0, 936x2 − 2, 68x1 + 0, 25w4,
ẏ1 = y2,
ẏ2 = −2, 21y2 − 2, 43y1 + 2, 43x1 + 2, 21x2.

3.2 Problem solution
Figure 1 shows a functional scheme of steering angle

control system. In the functional scheme of the ship’s

Figure 1. Functional scheme of steering angle control

course control system the GK gyrocompass is rigidly
connected to the controlled plant ship and through it
the main negative feedback is carried out on the de-
viation of the ship from the given course [Vlasenko,
Guardian,1983]. The true course, measured with the GK
and the SD selsyn-sensor, is transmitted through the SR
selsyn-receiver and the IT irreversible transmission to
the MD mechanical differential, which is an element of
comparison. The set value of the course is fed to the sec-
ond shaft of the MD. On the output (third) shaft of the
MD, the difference between the set and true values of the
course is obtained, i.e. the angle of deviation of the ship
from the given course e(t) = y(t) − ym(t). The output
shaft of the MD turns the converting device - the selsyn
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course sensor SCS, operating in transformer mode. It
converts the angle of deviation of the ship from a given
course into an electrical signal, which is fed to the input
of the amplifier of the SG steering gear.

Further improvement of the steering wheels is on the
way to replacing individual elements of the scheme with
more modern ones. The control algorithm proposed in
the functional scheme of the autoroule as a block for
forming a control algorithm BFAU.

Following the control law described in section 2, we
will set the law of change u(t) in the form

u(t) = Tς(t) (8)

where ς(t)−state vector of Observer 1, described by the
following equations

ς̇1(t) = ς2(t) + 600(v(t)− ς1(t)),

ς̇2(t) = 90000(v(t)− ς1(t)), v(t) = ς1(t)
(9)

After applying parameterization, selecting an operator
T (p) that satisfies the condition T (p)/Qm = 1/(p +
0, 01) equation (4) is transformed to the form

(p+ 0, 01)e(t) = v(t) + φ(t). (10)

The signal φ(t) contains all the uncertainty of the pa-
rameters of the control plant, nonlinearity and external
disturbances, the model of which is described in section
3.1.

Introduce an auxiliary loop to compensate the signal
φ(t)

(p+ 0, 01)e(t) = v(t). (11)

and we will make an equation for the mismatch ζ(t) =
e(t)− e(t), taking into account (10),(11)

(p+ 0, 01)ζ(t) = φ(t). (12)

The signal v(t) is formed in the form

v(t) = −(
1, 0001p+ 0, 01

0, 01p+ 1
)ζ(t), (13)

where ζ(t) estimate obtained from Observer 2, presented
in the BFAU as a real-differentiating link of the form

p
0,01p+1 .

4 Results of a numerical simulation of the ship’s
course control system

In accordance with accepted maritime practice, the line
of a given path is represented as a set of rectilinear sec-
tions. To solve the problem of controlling the ship’s

course, the trajectory consisting of two rectilinear sec-
tions. Numerical simulation of the control system was
carried in the MatLab Simulink software environment.
Figure 1 shows the trajectory of the ship corresponding
to the reference model. The driving time is 600 seconds
at a speed of 5 m/s. The motion graph is presented in the
trajectory coordinate system Oξη.

1.png

Figure 2. The trajectory of the ship

For a three-point lateral wave, the following transient
processes are obtained for the tracking error, control and
lateral deviation. Figures 3,4,5 show the transition pro-
cess of the tracking error (yaw angle ) e(t) = ψ(t) =
y(t) − ym(t),[rad], transition process of the lateral de-
viation η(t),[m], transition process of the control action
(steering angle) u(t) = δ(t),[rad].
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Figure 3. The transition process of the tracking error
e(t) = ψ(t) = y(t)− ym(t),[rad]

5 Conclusion
The problem of keeping a ship on a given trajectory un-

der conditions of uncertainty, the action of external dis-
turbances is investigated. A robust control low is applied
for a plant-a ship, the model of which takes into account
the moment of wind impact, the angle of the wave slope,
the independent ones that generate white noise; measure-
ment errors, as well as kinematic relations. The results of
numerical simulation in Matlab Simulink are presented.
The efficiency of the algorithm on a trajectory consisting
of two rectilinear sections is shown.
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Figure 4. The transition process of the lateral deviation η(t),[m]
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Figure 5. The transition process of the control action (steering angle)
u(t) = δ(t),[rad]
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